The curriculum runs over 3 semesters (18 months) and consists of 14 modules: 10 basic and 4 advanced. You follow the basic modules during the first two semesters and the advanced modules in the final semester.

Along with your studies, you pursue a work-based learning for the company.

The 90 ECTS credits of this MSc are distributed as follows:

Pflichtmodule

ECTS-Punkte2
DurchführungFrühjahrssemester
ZielgruppeStudierende im 1. Semester
Beschreibung

This course covers Linear Algebra from basic matrix/vector operations to singular value decomposition and probabilities from fundamental basics to Markov chains and limit theorems, which are prerequires for most of the AI courses.

The course will be directed by examples and intuition rather than formalism. Python language will be used in examples and exercises. Octave (matlab) equivalent will also be available for the linear algebra part.

Although this course covers most of the basics, it is assumed students have some notion and background in linear algebra, probability and coding.

Labs will be application exercises (numeric or not) and exercises aiming at introducing aspects or notions that are not discussed in the course.

 

Dozent/in

Dr. Ina Kodrasi
Dr. Théophile Gentilhomme

Assistent/in

Parvaneh Janbakhshi
Christine Marcel

ECTS-Punkte4
DurchführungFrühjahrssemester
ZielgruppeStudierende im 1. Semester
Beschreibung

The course gives global knowledge in data structure and algorithms. It is organized in 5 parts:

1. Introduction

2. Data structures and algorithms

3. Practical use of data formats

4. Advanced algorithms

5. Computing tools

Dozent/in

Olivier Bornet

Assistent/in

Christine Marcel
Philip Abbet
William Droz
Salim Kayal
Flavio Tarsetti

ECTS-Punkte4
DurchführungFrühjahrssemester
ZielgruppeStudierende im 1. Semester

Dozent/in

Prof. Dr. Michael Liebling

Assistent/in

Christine Marcel

ECTS-Punkte4
DurchführungFrühjahrssemester
ZielgruppeStudierende im 1. Semester

Dozent/in

Dr. Philip N. Garner
Dr. Ina Kodrasi

Assistent/in

Christine Marcel

ECTS-Punkte2
DurchführungHerbstsemester
ZielgruppeStudierende im 2. Semester
Beschreibung

• AI and the Law

• AI and Data Protection

• AI and Ethics

• Reproducibility, What is it?

• Data Organization and Evaluation

• Version Control with git

• Code Sharing with GitLab

• Unit Testing and Continuous Integration

• Documentation and Reporting

• Packaging and Deployment

 

Dozent/in

Dr. André Anjos
Porträtfoto von Sébastien Marcel
Dr. Sébastien Marcel
Olivier Bornet

Assistent/in

Dr. Joël Dumoulin
Marie-Constance Landelle
Pavel Korshunov
Flavio Tarsetti
Christine Marcel
François Charlet

ECTS-Punkte4
DurchführungHerbstsemester
ZielgruppeStudierende im 2. Semester
Beschreibung

• Linear regression

• Logistic Regression

• Decision Trees

• Boosting

• Multi-layer Perceptron

 

Dozent/in

Porträtfoto von Sébastien Marcel
Dr. Sébastien Marcel
Dr. André Anjos
Dr. Jean-Marc Odobez
Andre Freitas

Assistent/in

Anshul Gupta
Tiago de Freitas Pereira
Michael Villamizar
Rabeeh Karimi Mahabedi
Christine Marcel
Danick Panchard
Pavel Korshunov
Anjith George
Marco Valentino

ECTS-Punkte4
DurchführungHerbstsemester
ZielgruppeStudierende im 2. Semester
Beschreibung

This class covers basic concepts in image and video processing as well as computer vision. Topics include image formation and sampling, image transforms, image enhancement, and image and video compression. Computer vision topics include points of interest, optical flow, and camera calibration.

• Introduction to Digital Image processing (imaging types and

formats, applications)

• Point operations, image histograms

• Spatial Filtering and convolutions

• Edge detection

• 2D Fourier Transforms and representation of images, sampling, and image resizing (low pass filters, pyramids)

• Color images and color transformations

• Interest points (detection, representation, invariance, matching, RANSAC...)

• Calibration

• Optical Flow

Dozent/in

Prof. Dr. Michael Liebling
Dr. Jean-Marc Odobez

Assistent/in

Michael Villamizar
Christine Marcel

ECTS-Punkte4
DurchführungHerbstsemester
ZielgruppeStudierende im 2. Semester
Beschreibung

• Dimensionality Reduction and Clustering

• Kernel Methods and Support Vector Machines

• Graphical Models

• Exact and Approximate Inference in Bayesian Networks

• Probability Distribution Modelling

Dozent/in

Porträtfoto von Sébastien Marcel
Dr. Sébastien Marcel
Dr. André Anjos
Dr. James Henderson
Dr. Jean-Marc Odobez

Assistent/in

Samy Tafasca
Michael Villamizar
Rabeeh Karimi Mahabedi
Andreas Marfurt
Danick Panchard
Christine Marcel
Tiago de Freitas Pereira
Anjith George

ECTS-Punkte4
DurchführungHerbstsemester
ZielgruppeStudierende im 2. Semester
Beschreibung

This course will introduce the students the fundamentals of speech processing and provide them with the key formalisms, models and algorithms to implement speech processing applications such as, speech recognition, speech synthesis, paralinguistic speech processing, multichannel speech processing.

 

Course content

 

Introduction

why speech processing? speech production, speech perception, basic

phonetics

 

Speech signal analysis

Sampling, Quantization, Time domain processing, Frequency domain

processing, linear prediction, cepstrum, speech coding

Practical: Speech signal analysis in Octave and Praat

 

Machine learning for speech processing

Static classification, Sequence classification, Regression

Practical: Statistical pattern recognition, Hidden Markov models in Octave

 

Automatic speech recognition

Dynamic programming, Instance-based speech recognition, Hidden

Markov model-based speech recognition, Evaluation measures

Practical: Kaldi tutorial

 

Text-to-speech synthesis

Concatenative speech synthesis, Statistical parametric speech synthesis, Evaluation measures

Practical: Grapheme-to-phoneme conversion, HMM-based speech synthesis

 

Paralinguistics speech processing

Emotion, gender, accent, pathological speech assessment, Evaluation

measures

Practical: OpenSMILE tutorial

Dozent/in

Dr. Mathew Magimai Doss

Assistent/in

Christine Marcel
Prasad Ravi
Julian Fritsch
Pavankumar S. Dubagunta
Enno Hermann

ECTS-Punkte4
DurchführungFrühjahrssemester
ZielgruppeStudierende im 3. Semester

Dozent/in

Dr. Olivier Canévet

Assistent/in

Christine Marcel
Alexandre Nanchen

ECTS-Punkte10
DurchführungFrühjahrssemester
ZielgruppeStudierende im 1. Semester

Dozent/in

Olivier Bornet
Dr. Joël Dumoulin

Assistent/in

Christine Marcel

ECTS-Punkte30
DurchführungHerbstsemester
ZielgruppeStudierende im 1. oder 2. Semester
Beschreibung

The aim of Module P02-AI Project(s) development is to develop the project(s) the student defines in Module P01 – AI Company strategy and Project(s) definition.

Dozent/in

Dr. Joël Dumoulin
Olivier Bornet

Assistent/in

Christine Marcel
Jérôme Kämpf
Raphaëlle Luisier

Noch Fragen?

Unsere Student Manager sind für Sie da!