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Neural ODEs are Fragile
• A neural ODE (NODE) is a continuous-depth model

ξ(0) = ϕ(x, ω) , (input layer) (1)

ξ̇(t) = ft(ξ(t), θ(t)) , (continuum of hidden layers) (2)
y(T ) = ψ(ξ(T ), η) , (output layer) (3)

where t ∈ [0, T ], x is the input data (e.g. an image), ξ represents
the state of the NODE, and ϕ, f, ψ are neural networks.

• Neural ODEs may not be robust to noise in features.

Figure 1: Fast gradient sign method attack (Goodfellow et al., 2014)

Contractivity Promotes Robustness
Definition 1. Let ξ(t) and ξ̃(t) be two solutions of (2) starting from ξ(0)

and ξ̃(0), respectively. Then (2) is contractive if ∃C, ρ > 0, such that ||ξ̃(t)−
ξ(t)|| ≤ Ce−ρt||ξ̃(0)− ξ(0)|| for all t > 0.

If the ODE (2) is contractive, then perturbations in initial conditions
vanish exponentially fast.

Figure 2: Comparison between a vanilla NODE (top) exhibiting sensitivity, and
a contractive-NODE (bottom) showing robustness against input perturbations
on a 2D binary classification task.

Neural ODEs with Contractivity by Design
By design: Allows almost free parametrization of weights, and decrease
computationally complexity by lifting the need of regularizers.

Theorem 1. For a given constant skew-symmetric matrix J = −J⊤, let

ξ̇ = (J − γI)

(
K⊤(t)σ(K(t)ξ + b(t)) + (L⊤(t)L(t) + κI)ξ

)
, (4)

where σ(·) is the activation function and has bounded derivative 0 ≤ σ′(·) ≤ S
for S > 0, κ > 0 is a constant, K, b, and L are trainable parameters, and
define c1 = infs∈[0,T ] λ(L

⊤(s)L(s)) + κ, c2 = sups∈[0,T ](λ̄(L
⊤(s)L(s)) +

Sλ̄(K⊤(s)K(s)))+κ, α =
c2 − c1
c2 + c1

. If ϵ > 0 is such that 1−α2− ϵ > 0 and

γ ≥

√
(α2 + ϵ)λ̄(JJ⊤)

1− α2 − ϵ
, then, NODE (4) is contractive.

The ODE (4) is a Hamiltonian system without input-output ports.
Therefore, is called contractive Hamiltonian neural ODE (CH-NODE).

Non-exploding Gradients
Backward Sensitivity Matrices (BSM) for NODE (4) is

∂ξ(T )

∂ξ(T − t)
, ∀t ∈ [0, T ]. (5)

• Vanishing/Exploding Gradients : convergence to zero or the di-
vergence of BSM during training. Causes numerical instability.

Theorem 2. The BSM (5) associated with the CH-NODE (4) satisfies∣∣∣∣∣∣∣∣ ∂ξ(T )

∂ξ(T − t)

∣∣∣∣∣∣∣∣ ≤ exp (−ρ
2
t), ∀t ∈ [0, T ] , (6)

where ρ = ϵβ(γ2+λ̄(JJ⊤))
γ , and β = 1

2 (c1 + c2). Moreover, we have∣∣∣∣∣∣∣∣∂ξ(T )∂ξ(0)

∣∣∣∣∣∣∣∣ ≤ 1, i.e., the input-output sensitivity is smaller than 1 (robustness

guarantees).

Experiments
1. MNIST

Nominal N (0, σ) s&p(σ)
N NN Train Test σ = 0.05 σ = 0.2 σ = 0.05 σ = 0.2

4
ResNet 98.91 97.01 63.00 52.56 59.8 42.02
H-DNN 94.68 94.60 31.12 26.65 30.52 23.83
C-HNN 94.03 92.38 81.30 77.69 79.86 63.84

8
ResNet 99.12 97.28 32.99 30.56 30.27 28.11
H-DNN 95.30 95.17 60.8 49.88 61.15 45.62
C-HNN 89.55 89.01 86.33 81.85 84.22 72.18

12
ResNet 99.11 96.86 39.13 34.04 41.04 29.80
H-DNN 95.36 95.23 26.79 23.53 27.48 22.75
C-HNN 90.01 89.76 85.68 80.97 84.88 72.82

Table 1: Robustness comparison among ResNets (He et al., 2016), H-DNNs
(Galimberti et al., 2021), and C-HNNs under the zero-mean Gaussian and the
salt and pepper noise.

2. Non-exploding gradients
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Figure 3: Evolution of 2-norm of the BSM during the training of a 16-layer C-
HNN exhibiting non-exploding gradients.

Conclusion and Future Work
• NODEs based on Hamiltonian dynamics that are contractive by

design, enjoys non-exploding gradients, and improved robust-
ness guarantees.

• Analyze the robustness of CH-NODEs against adversarial attacks
(e.g. FGSM, PGM).


