

On Robust Classification using Contractive Hamiltonian Neural ODEs

Muhammad Zakwan, Liang Xu, Giancarlo Ferrari-Trecate Institute of Mechanical Engineering, EPFL, Switzerland.

(3)

Neural ODEs are Fragile

• A neural ODE (NODE) is a continuous-depth model

$$\boldsymbol{\xi}(0) = \phi(\boldsymbol{x}, \omega)$$
, (input layer) (1)

$$\dot{\boldsymbol{\xi}}(t) = f_t(\boldsymbol{\xi}(t), \theta(t))$$
, (continuum of hidden layers) (2)

$$\boldsymbol{y}(T) = \psi(\boldsymbol{\xi}(T), \eta)$$
, (output layer)

where $t \in [0, T]$, x is the input data (e.g. an image), ξ represents the state of the NODE, and ϕ , f, ψ are neural networks.

• Neural ODEs may not be robust to noise in features.

Figure 1: Fast gradient sign method attack (Goodfellow et al., 2014)

Contractivity Promotes Robustness

Definition 1. Let $\xi(t)$ and $\tilde{\xi}(t)$ be two solutions of (2) starting from $\xi(0)$ and $\tilde{\xi}(0)$, respectively. Then (2) is contractive if $\exists C, \rho > 0$, such that $||\tilde{\xi}(t) - \xi(t)|| \leq Ce^{-\rho t}||\tilde{\xi}(0) - \xi(0)||$ for all t > 0.

If the ODE (2) is contractive, then perturbations in initial conditions vanish exponentially fast.

Figure 2: Comparison between a vanilla NODE (top) exhibiting sensitivity, and a contractive-NODE (bottom) showing robustness against input perturbations on a 2D binary classification task.

Neural ODEs with Contractivity by Design

By design: Allows almost free parametrization of weights, and decrease computationally complexity by lifting the need of regularizers.

Theorem 1. For a given constant skew-symmetric matrix $\boldsymbol{J} = -\boldsymbol{J}^{\top}$, let

$$\dot{\boldsymbol{\xi}} = (\boldsymbol{J} - \gamma \boldsymbol{I}) \left(\boldsymbol{K}^{\top}(t) \sigma(\boldsymbol{K}(t)\boldsymbol{\xi} + \boldsymbol{b}(t)) + (\boldsymbol{L}^{\top}(t)\boldsymbol{L}(t) + \kappa \boldsymbol{I})\boldsymbol{\xi} \right), \quad (4)$$

where $\sigma(\cdot)$ is the activation function and has bounded derivative $0 \le \sigma'(\cdot) \le S$ for S > 0, $\kappa > 0$ is a constant, \boldsymbol{K} , \boldsymbol{b} , and \boldsymbol{L} are trainable parameters, and define $c_1 = \inf_{s \in [0,T]} \underline{\lambda}(\boldsymbol{L}^{\top}(s)\boldsymbol{L}(s)) + \kappa, c_2 = \sup_{s \in [0,T]} (\bar{\lambda}(\boldsymbol{L}^{\top}(s)\boldsymbol{L}(s)) + S\bar{\lambda}(\boldsymbol{K}^{\top}(s)\boldsymbol{K}(s))) + \kappa, \alpha = \frac{c_2 - c_1}{c_2 + c_1}$. If $\epsilon > 0$ is such that $1 - \alpha^2 - \epsilon > 0$ and $\gamma \ge \sqrt{\frac{(\alpha^2 + \epsilon)\bar{\lambda}(\boldsymbol{J}\boldsymbol{J}^{\top})}{1 - \alpha^2 - \epsilon}}$, then, NODE (4) is contractive.

The ODE (4) is a Hamiltonian system without input-output ports. Therefore, is called *contractive Hamiltonian neural ODE (CH-NODE)*.

Non-exploding Gradients

Backward Sensitivity Matrices (BSM) for NODE (4) is

$$\frac{\partial \boldsymbol{\xi}(T)}{\partial \boldsymbol{\xi}(T-t)}, \quad \forall t \in [0,T]. \tag{5}$$

• Vanishing/Exploding Gradients: convergence to zero or the divergence of BSM during training. Causes numerical instability.

Theorem 2. The BSM (5) associated with the CH-NODE (4) satisfies

$$\left| \left| \frac{\partial \boldsymbol{\xi}(T)}{\partial \boldsymbol{\xi}(T-t)} \right| \right| \le \exp\left(-\frac{\rho}{2}t\right), \quad \forall t \in [0,T], \tag{6}$$

where $\rho = \frac{\epsilon \beta(\gamma^2 + \bar{\lambda}(\mathbf{J}\mathbf{J}^{\top}))}{\gamma}$, and $\beta = \frac{1}{2}(c_1 + c_2)$. Moreover, we have $\left\|\frac{\partial \boldsymbol{\xi}(T)}{\partial \boldsymbol{\xi}(0)}\right\| \leq 1$, i.e., the input-output sensitivity is smaller than 1 (robustness guarantees).

Experiments

1. MNIST

		Nominal		$\mathcal{N}(0,\sigma)$		$s\&p(\sigma)$	
N	NN	Train	Test	$\sigma = 0.05$	$\sigma = 0.2$	$\sigma = 0.05$	$\sigma = 0.2$
4	ResNet	98.91	97.01	63.00	52.56	59.8	42.02
	H-DNN	94.68	94.60	31.12	26.65	30.52	23.83
	C-HNN	94.03	92.38	81.30	77.69	79.86	63.84
8	ResNet	99.12	97.28	32.99	30.56	30.27	28.11
	H-DNN	95.30	95.17	60.8	49.88	61.15	45.62
	C-HNN	89.55	89.01	86.33	81.85	84.22	72.18
12	ResNet	99.11	96.86	39.13	34.04	41.04	29.80
	H-DNN	95.36	95.23	26.79	23.53	27.48	22.75
	C-HNN	90.01	89.76	85.68	80.97	84.88	72.82

Table 1: Robustness comparison among ResNets (He et al., 2016), H-DNNs (Galimberti et al., 2021), and C-HNNs under the zero-mean Gaussian and the salt and pepper noise.

2. Non-exploding gradients

Figure 3: Evolution of 2-norm of the BSM during the training of a 16-layer C-HNN exhibiting non-exploding gradients.

Conclusion and Future Work

- NODEs based on Hamiltonian dynamics that are contractive by design, enjoys non-exploding gradients, and improved robustness guarantees.
- Analyze the robustness of CH-NODEs against adversarial attacks (e.g. FGSM, PGM).