Universität Konstanz

Data-driven Modeling and Control of Complex Dynamical Systems

oworkers: L. Mechelli, J. Rohleff (University of Konstanz) S. Casper, D. Fuertinger, F. Kappel, P. Kotanko (Renal Research Institute New York & University of Graz)

Stefan Volkwein

University of Konstanz, Department of Mathematics and Statistics, Chair for Numerical Optimization

Workshop "Trends on Dissipativity in Systems and Control", Brig, Switzerland, May 24, 2022

Our Motivation for the Research

Parametrized Dynamical System: for parameter $\mu \in \mathcal{M}_{ad}$ and input $u \in \mathcal{U}_{ad}$

 $\dot{y}(t) = f(t, y(t), u(t); \mu)$ for t > 0, $y(0) = y_{\circ}$, z(t) = h(t, y(t)) for t > 0

Optimal Design and Control:

- optimal feedback (MPC, tailored open-loop optimization methods)
- optimal experimental design (bilevel optimization, inverse problems)
- multiobjective aspects (optimal compromises, set-oriented methods)
- network optimization (complex couplings, different types of dynamical systems)

Our Foci: PDEs, model-order reduction (MOR), fast optimization algorithms

Outline of the Talk

- 1 Optimal EPO Dosing in Hemodialysis
- 2 Extended DMD
- 3 Empirical Gramian-Based Approach
- 4 Conclusion and Outlook

1 Optimal EPO Dosing in Hemodialysis

References:

[1] Beermann: Reduced-order methods for a parametrized model for erythropoiesis involving structured population equations with one structural variable, 2015

[2] Fuertinger: A model of erythropoiesis, 2012

- [3] Fuertinger/Kappel/Thijssen/Levin/Kotanko: A model of erythropoiesis in adults with sufficient iron availability, 2013
- [4] Grüne/Pannek: Nonlinear Model Predictive Control: Theory and Algorithms, 2016
- [5] Rogg/Fuertinger/V./Kappel/Kotanko: Optimal EPO dosing in hemodialysis patients using a non-linear model predictive control approach, 2019

Hormone EPO (Erythropoietin):

- produced in kidneys
- drives production of new red blood cells (erythrocytes)
- Iow EPO levels cause neocytolysis (active reduction of erythrocytes)

Chronic Kidney Disease:

- insufficient production and release of EPO
- chronic anemia (chronic lack of blood)
- exogenous EPO administration during hemodialysis treatments

Question: What are the "optimal" EPO doses?

Control Input [5]:

- administration time points (3 times per week): $t_1^*, t_2^*, t_3^*, \dots, t_m^* \in [t_\circ, t_f]$
- find EPO dose in $[0, E_{max}]$ for every t_i^*
- vector $u = (u_1, \dots, u_m) \in \mathbb{R}^m$, $\mathcal{U}_{\mathsf{ad}} = \left\{ u \in \mathbb{R}^m \mid 0 \le u_i \le 1 \text{ for } 1 \le i \le m \right\}$

EPO Concentration in the Blood:

time [days]

State Vector: $y = (y_1, ..., y_5)$ with population densities $y_i(t, x)$ and maturity $x \in [a_i, b_i]$ BFU-E **Y**1 Model Equations [1, 2, 3]:

$$y_t(t,x) + \underbrace{v(E(t,\boldsymbol{u}))}_{y_x(t,x)} y_x(t,x) = \left(\begin{array}{c} \text{proliferation} \\ \beta \end{array} - \begin{array}{c} \text{apoptosis} \\ \alpha(E(t,\boldsymbol{u}),x) \end{array} \right) y(t,x), \quad y(t_\circ,x) = y_\circ(x) \end{array} \right)$$

Boundary Conditions:

$$y_1(t,a_1) = S_0, \qquad y_2(t,a_2) = y_1(t,b_1), \qquad y_3(t,a_3) = y_2(t,b_2)$$

$$y_4(t,a_4) = \frac{y_3(t,b_3)}{v(E(t,u))}, \qquad y_5(t,a_5) = v(E(t,u))y_4(t,b_4)$$

Patient-Depending Coefficient Functions:

$$\alpha_{2}(E) = \frac{\mu_{1}}{1 + \exp\left(\mu_{2}E - \mu_{3}\right)}, \quad \alpha_{5}(E, x) = \alpha_{5}^{0} + \chi_{[x_{\min}, x_{\max}]}(x) \cdot \widetilde{\alpha}_{5}(E), \quad \nu(E) = \frac{\mu_{4} - \mu_{5}}{1 + \exp\left(-\mu_{6}E + \mu_{7}\right)} + \mu_{5}(E)$$

Control Input:
$$E(t,u) = \frac{1}{c_{\text{tbv}}} \sum_{i=1}^{m} u_i \chi_i(t) + E^{\text{end}} \text{ with } \chi_i(t) = E_{\max} e^{-\lambda(t-t_i^*)} \chi_{[t_i^*,\infty)}(t)$$

V2

Erythroblasts y3

Marrow Reticulocytes **Y**4

> Erythrocytes V5

Desired Total Population: hemoglobin target range of 10-11 g/dl

Total Erythrocytes Population:
$$\int_{a_5}^{b_5} y_5(t,x) dx$$

Cost Functional [5]:

$$J(y,u) = \frac{\sigma_{\Omega}}{2} \int_{t_{\circ}}^{t_{f}} \left| \int_{a_{5}}^{b_{5}} y_{5}(t,x) \, \mathrm{d}x - y_{d} \right|^{2} \, \mathrm{d}t + \frac{\sigma_{f}}{2} \left| \int_{a_{5}}^{b_{5}} y_{5}(t_{f},x) \, \mathrm{d}x - y_{d} \right|^{2} + \frac{1}{2} \sum_{i=1}^{m} \gamma_{i} |u_{i}|^{2}$$

with weights $\sigma_{\Omega}, \sigma_{f}, \gamma_{i} > 0$

Goal: closed-loop/feedback control taking into account changes in parameters and data

Algorithm 1: Nonlinear model predictive control [4, 5]

- 1: Get initial time $t_{\circ} \in [0,T]$ and initial condition y_{\circ} ;
- ^{2:} Choose prediction horizon $\Delta T = N\Delta t$ and set $t_f = t_o + \Delta T$;
- 3: Minimize the cost (by projected BFGS method with Armijo line search)

$$J(y,u) = \frac{\sigma_{\Omega}}{2} \int_{t_{\circ}}^{t_{f}} \left| \int_{a_{5}}^{b_{5}} y_{5}(t,x) \, \mathrm{d}x - y_{d} \right|^{2} \, \mathrm{d}t + \frac{\sigma_{f}}{2} \left| \int_{a_{5}}^{b_{5}} y_{5}(t_{f},x) \, \mathrm{d}x - y_{d} \right|^{2} + \frac{1}{2} \sum_{i=1}^{m} \gamma_{i} |u_{i}|^{2}$$

subject to PDE constraints and bilateral control constraints;

- 4: Apply only the first component of the resulting optimal control;
- 5: Set new initial time $t_\circ = t_\circ + \Delta t$ and repeat iteratively

Problem: nonconvexity due to the nonlinearities

Idea: linearize the model to get a convex linear-quadratic open-loop problem

2 Extended DMD

2 Extended Dynamic Mode Decomposition (EDMD) for MPC

References:

- [6] Alfatlawi/Srivastava: An incremental approach to online dynamic mode decomposition for time-varying systems with applications, 2019
- [7] Benner/Himpe/Mitchell: On reduced input-output dynamic mode decomposition, 2018
- [8] Casper/Fuertinger/Kotanko/Mechelli/Rohleff/V.: Data-driven modeling and control of complex dynamical systems arising in renal anemia therapy, 2021
- [9] Grüne/Pannek: Nonlinear Model Predictive Control: Theory and Algorithms, 2017
- [10] Korda/Mezić: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, 2018
- [11] Kutz/Brunton/Brunton/Proctor: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, 2016
- [12] Rohleff: An incremental approach to dynamic mode decomposition for time-varying systems with applications to a model for erythropoiesis, 2020
- [13] Zhang/Rowley/Deem/Cattafesta: Online dynamic mode decomposition for time-varying systems, 2017

Idea of DMDc [7, 11]: $y_{k+1} = F(t_k, y_k, u_k) \overset{\text{DMDc}}{\approx} Ay_k + Bu_k$ for $k \ge 0$ and $y_0 = y_0$ Computation: for $Y_0 = [y_0 | ... | y_{m-1}], Y_1 = [y_1 | ... | y_m], U = [u_0 | ... | u_{m-1}]$ solve

$$[A,B] = \underset{\tilde{A},\tilde{B}}{\operatorname{arg\,min}} \|Y_1 - \tilde{A}Y_0 - \tilde{B}U\|_F \rightarrow [A|B] = Y_1 \begin{bmatrix} Y_0 \\ U \end{bmatrix}^{\top} \& \text{ eigendecomposition of } A \text{ for MOR}$$

Approximation for time-varying systems: computation of time-varying DMDc [6, 12, 13]

Data-driven Modeling and Control of Complex Dynamical Systems

Extended Dynamic Mode Decomposition (EDMD) [10, 11]

Discrete Dynamical System: $y_0 = y_0$, $y_{k+1} = F(t_k, y_k, u_k)$ and $z_k = h(t_k, y_k)$ for $k \ge 0$ Lifting/observable functions: $\psi = (\psi_1, \dots, \psi_{n_{\psi}}) : \mathbb{R}^n \to \mathbb{R}^{n_{\psi}}$ with $n_{\psi} < n$ Computation: for $\hat{Y}_0 = [\psi(y_0) | \dots | \psi(y_{m-1})]$, $\hat{Y}_1 = [\psi(y_1) | \dots | \psi(y_m)]$, $U = [u_0 | \dots | u_{m-1}]$ solve $[\hat{A}, \hat{B}] = \underset{\tilde{A}, \tilde{B}}{\operatorname{arg\,min}} \| \hat{Y}_1 - \tilde{A} \hat{Y}_0 - \tilde{B} U \|_F$, $\hat{C} = \underset{\tilde{C}}{\operatorname{arg\,min}} \| \hat{Y}_0 - \tilde{C} Y_0 \|_F$

Surrogate model: $\hat{y}_0 = \psi(y_\circ)$, $\hat{y}_{k+1} = \hat{A}\hat{y}_k + \hat{B}u_k$ and $z_k \approx \hat{z}_k = \hat{C}\hat{y}_k$ for $k \ge 0$ Objective: Recall that

$$J(y,u) = \frac{\sigma_{\Omega}}{2} \int_{t_0}^{t_f} \left| \int_{a_5}^{b_5} y_5(t,x) \, \mathrm{d}x - y_d \right|^2 \mathrm{d}t + \frac{\sigma_f}{2} \left| \int_{a_5}^{b_5} y_5(t_f,x) \, \mathrm{d}x - y_d \right|^2 + \frac{1}{2} \sum_{i=1}^m \gamma_i |u_i|^2$$

 \Rightarrow applying of DMDc only for the y_5 variable

 \Rightarrow utilize 3 to seven Legendre polynomial evaluation of the snapshots for the ψ_i 's

3 Empirical Gramian-Based Approach

References:

[14] Condon/Ivanov: Empirical balanced truncation of nonlinear systems, 2004

[15] Garcia/Basilio: Computation of reduced-order models of multivariable systems by balanced truncation, 2002

[16] Himpe: emgr – The empirical gramian framework, 2018

[17] Himpe/Ohlberger: A unified software framework for empirical gramians, 2013

[18] Lall/Marsden/Glavaški: Empirical model reduction of controlled nonlinear systems, 2001

[19] Zhou/Doyle/Glover: Robust and Optimal Control, 1996

Linear Time Invariant (LTI) System:

$$\dot{y}(t) = Ay(t) + Bu(t)$$
 for $t > 0$, $x(0) = y_{\circ}$, $z(t) = Cy(t)$ for $t > 0$

Controllability Gramian [19]:

$$W_c = \int_0^\infty e^{At} B B^\top e^{A^\top t} \, \mathrm{d}t = \int_0^\infty \left(e^{At} B \right) \left(e^{At} B \right)^\top \mathrm{d}t$$

Observability Gramian [19]:

$$W_o = \int_0^\infty e^{A^\top t} C^\top C e^{At} \, \mathrm{d}t = \int_0^\infty \left(e^{A^\top t} C^\top \right) \left(e^{A^\top t} C^\top \right)^\top \mathrm{d}t$$

Linear Time Variant System:

$$\dot{y}(t) = A(t)y(t) + Bu(t) + g(t)$$
 for $t > 0$, $x(0) = y_{\circ}$, $z(t) = Cy(t)$ for $t > 0$

 \Rightarrow extension by empirical gramians which are based on simulations only

Linear Time Variant System:

$$\dot{y}(t) = A(t)y(t) + Bu(t) + g(t)$$
 for $t > 0$, $x(0) = y_{\circ}$, $z(t) = Cy(t)$ for $t > 0$ (1)

Empirical Controllability Gramian [15, 16]:

$$\widehat{W}_{c} = \sum_{l=1}^{r} \sum_{m=1}^{s} \sum_{i=1}^{p} \frac{1}{rsc_{m}^{2}} \int_{0}^{\infty} Y^{ilm}(t) \, \mathrm{d}t \text{ with } Y^{ilm}(t) = \left(y^{ilm}(t) - \overline{y}^{ilm}\right) \left(y^{ilm}(t) - \overline{y}^{ilm}\right)^{\top}$$

where $y^{ilm}(t) \in \mathbb{R}^{n_y}$ solves (1) corresponding to the impulse input $u(t) = c_m T_l e_i \delta(t)$ with varying positive scalars c_m , orthogonal matrices T_l and unit vectors e_i

Empirical Observability Gramian [16, 17, 18]:

$$\widehat{W}_{o} = \sum_{l=1}^{r} \sum_{m=1}^{s} \frac{1}{rsc_{m}^{2}} \int_{0}^{\infty} T_{l} Z^{lm}(t) T_{l}^{\top} dt \text{ with } Z_{ij}^{lm}(t) = \left(z^{ilm}(t) - \overline{z}^{ilm} \right)^{\top} \left(z^{jlm}(t) - \overline{z}^{jlm} \right)$$

where $z^{ilm}(t) \in \mathbb{R}^{n_z}$ is the output of (1) corresponding to the initial condition $y_{\circ} = c_m T_l e_i$.

3 Empirical Gramian-Based Approach - 3.2 Model Reduction by Balancing Transformation

Singular Value Decomposition for Balancing [14, 15]:

$$\widehat{W}_{c}^{1/2}\widehat{W}_{o}^{1/2} = U\Sigma V^{\top} = \begin{bmatrix} U_{1} | U_{2} \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{1} | V_{2} \end{bmatrix}^{\top} = \begin{pmatrix} U_{1}\Sigma_{1}V_{1}^{\top} & 0 \\ 0 & U_{2}\Sigma_{2}V_{2}^{\top} \end{pmatrix}$$

Reduced-Order Modeling: $y(t) \approx U_1 y^{\ell}(t)$

$$\begin{aligned} \dot{y}^{\ell}(t) &= \begin{bmatrix} V_1^{\top} A(t) U_1 \end{bmatrix} y^{\ell}(t) + \begin{bmatrix} V_1^{\top} B \end{bmatrix} u(t) + g(t) \text{ for } t \in (0, T], \quad y^{\ell}(0) = V_1^{\top} y_{\circ} \\ z^{\ell}(t) &= \begin{bmatrix} C U_1 \end{bmatrix} y^{\ell}(t) & \text{ for } t \in [0, T] \end{aligned}$$

Quadratic Cost functional: $J(y,u) = \frac{1}{2} \int_0^T ||z(t) - z_Q(t)||_2^2 dt + \frac{\sigma}{2} \int_0^T ||u(t)||_2^2 dt$ First-Order Optimality System: $u(t) = B^\top p(t) / \sigma$, q(t) = p(T-t)

$$\dot{x}(t) = D(t)x(t) + \tilde{D}(t)x(T-t) + G(t)$$
 for $t \in (0,T)$, $x(0) = x_{\circ}$

for x = (y,q) and appropriate D(t), $\tilde{D}(t)$ and G(t) \Rightarrow apply empirical gramian approach for (2) (instead of POD) (2)

3 Empirical Gramian-Based Approach - 3.3 Numerical Example

Dynamical System: heat equation with time varying convection

$$\frac{\partial y_u}{\partial t}(t, \boldsymbol{x}) - \lambda \Delta y_u(t, \boldsymbol{x}) + \alpha(t)(v(\boldsymbol{x}) \cdot \nabla y_u(t, \boldsymbol{x})) = u(t, \boldsymbol{x}) + f(\boldsymbol{x}), \qquad (t, \boldsymbol{x}) \in \Omega_T$$

$$\frac{\partial y_u}{\partial n}(t, \mathbf{s}) + \gamma y_u(t, \mathbf{s}) = 0, \qquad (t, \mathbf{s}) \in \Sigma_T$$
$$y_u(0, \mathbf{x}) = y_o(\mathbf{x}), \qquad \mathbf{x} \in \Omega$$

First-Order Optimality System: localized distributed control

$$\dot{x}(t) = D(\alpha(t))x(t) + \tilde{D}x(T-t) + G(t) \text{ for } t \in (0,T), \quad x(0) = x_{\circ}$$
(3)

Input for (3): $\alpha(t) = c_m T_l e_i \hat{\alpha}(t)$

		CPU time	speed-up
gramian POD	Full model	465.0 s	_
Relative error in $u = 2.31 \cdot 10^{-4} = 1.13 \cdot 10^{-1}$	Gramian	43.1s(+ 51.5s)	10.8 (4.8)
	POD	42.7 s (+225.8s)	10.9 (1.7)

٦.

Conclusions and Outlook

Conclusions:

- MPC for a nonlinear model describing EPO treatment
- speed-up by utilizing linearization based on EDMD
- empirical gramian approach for first-order optimality system

Outlook:

- properties of the EDMD approximation
- update strategies for EDMD
- comparison to other linearization techniques

More informations on our group: https://www.mathematik.uni-konstanz.de/volkwein

Thank you for your attention!