
Port-Hamiltonian Systems and Energy Conversion
Trends on Dissipativity in Systems and Control, Brig, May 2022

Arjan van der Schaft (joint work with Dimitri Jeltsema)

Bernoulli Institute for Mathematics, Computer Science and AI

Jan C. Willems Center for Systems and Control, University of Groningen

Arjan van der Schaft (Univ. of Groningen) Energy Conversion 1 / 38



Motivation and context

Many classical and current technological problems are concerned with
energy conversion and energy harvesting:

watermills, windmills, steam engine, combustion engines, electrical motors
and generators, turbines, fuel cells, etc..

Often multiphysics systems.

Typically, the design and control of such systems is done case by case.

From the heat engine it is known that heat cannot be freely converted into
mechanical work: Second law of thermodynamics.

Question:

Is there a theory of energy conversion of general multiphysics systems?
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Central question of the talk:

Consider a physical system with two power ports

cyclo-passive
system

u1

y1

u2

y2

How to convert energy flowing in at port 1 to energy flowing out at port 2,

and what are possible limitations in order to do this?

Note: We consider physical systems without internal energy creation,
which are thus cyclo-passive :

∮ [
y⊤1 (t)u1(t) + y⊤2 (t)u2(t)

]
dt ≥ 0

for any cyclic motion.
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Recall: A function S(x) is a storage function for system with input vector
u and equally dimensioned output vector y if

S
(
x(t2)

)
≤ S(x

(
t1)

)
+

t2∫

t1

y⊤(t)u(t)dt

holds for all t1 ≤ t2, all input functions u : [t1, t2] → R
m, and all initial

conditions x(t1).

Clearly, if there exists a storage function then the system is cyclo-passive:
substitute x(t2) = x(t1).

The converse holds under the assumption of reachability from and
controllability to some ground state x∗.

The system is passive if S(x) ≥ 0.

Differential version of the above inequality is

d

dt
S ≤ y⊤u
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Analysis of energy conversion

Formulate the system into port-Hamiltonian form

ẋ = J(x)e −R(x , e) + G (x)u, e = ∂H
∂x

(x),

y = G⊤(x)e, x ∈ X

with n-dimensional state space X , Hamiltonian H : X → R,
skew-symmetric interconnection matrix J(x) = −J⊤(x), and
energy-dissipation mapping R satisfying

e⊤R(x , e) ≥ 0, for all x , e

Any port-Hamiltonian system satisfies

d

dt
H(x) = e⊤J(x)e − e⊤R(x , e) + e⊤G (x)u ≤ y⊤u

Thus H is a storage function, and any port-Hamiltonian system is
cyclo-passive.
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Port-based modeling of any physical system leads to a port-Hamiltonian
formulation.

Port-based modeling is based on representing the system as a network of
ideal components, representing

• Energy storage: integrator dynamics defining state variables

• Energy-dissipation: static

• Power-routing elements (ideal transformers, gyrators, · · · ): static

Furthermore, these ideal components are interconnected by pairs of
conjugate variables, whose product equal power.

The resulting class of dynamical systems are called port-Hamiltonian
systems, although, differently from standard Hamiltonian systems, they do
allow for energy dissipation, as well as interaction with the surroundings
(’open systems’).

Every physical system that is modeled in this way defines a

port-Hamiltonian system.

For control purposes ’any’ physical system can be modeled this way.
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Example (DC motor)

_

V

I

J

b

R L

K

ω

τ

+

Five interconnected subsystems:

• 2 energy-storing elements: inductor L with state ϕ (flux), and rotational
inertia J with state p (angular momentum);
• 2 energy-dissipating elements: resistor R and friction b;
• gyrator K ;

together with electrical port (V , I ) and mechanical port (τ, ω).
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Example (DC motor cont’d)

The subsystems are interconnected by

VL + VR + VK + V = 0, while currents are equal

τJ + τb + τK + τ = 0, while angular velocities are equal

Results in port-Hamiltonian model

[
ϕ̇

ṗ

]
=

([
0 −K

K 0

]
−

[
R 0
0 b

])



ϕ

L
p

J


+

[
1 0
0 1

] [
V

τ

]
,

[
I

ω

]
=

[
1 0
0 1

]



ϕ

L
p

J


 , H(ϕ, p) =

ϕ2

2L
+

p2

2J
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Generalization w.r.t. classical Hamiltonian dynamics

ẋ = J(x)∂H
∂x

(x) −R(x , ∂H
∂x

(x)) + G (x)u

y = GT (x)∂H
∂x

(x)

Sir William Rowan Hamilton

Addition of

• Energy-dissipating elements

• External ports u, y

• Possibly algebraic constraints
(not in the above input-state-output formulation)

.
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Back to energy conversion

Consider the following cartoon of a port-Hamiltonian system with two
ports:

u1

y1

u2

y2

dissipation

storage

port 1 port 2

How to convert energy from port 1 to port 2 ?
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Hence

u =

[
u1
u2

]
, y =

[
y1
y2

]

thus
d

dt
H ≤ y⊤1 u1 + y⊤2 u2

Energy conversion from port 1 to port 2 if

∮
y⊤1 (t)u1(t)dt ≥ 0, energy consumption

while ∮
y⊤2 (t)u2(t)dt ≤ 0, energy production
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Suppose there is a partitioning

x =

[
x1
x2

]

such that the port-Hamiltonian system has block-diagonal structure

ẋ1 = J1(x1, x2)e1 −R1(x1, x2, e1) + G1(x1, x2)u1,

ẋ2 = J2(x1, x2)e2 −R2(x1, x2, e2) + G2(x1, x2)u2,

y1 = G⊤

1 (x1, x2)e1, e1 =
∂H

∂x1
(x1, x2),

y2 = G⊤

2 (x1, x2)e2, e2 =
∂H

∂x2
(x1, x2),

where G1(x1, x2) is an invertible matrix for all x1, x2. Recall

J1(x) = −J⊤1 (x), J2(x) = −J⊤2 (x), e⊤1 R1(x , e1) ≥ 0, e⊤2 R2(x , e2) ≥ 0
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Motions with constant x1

Hence for all x̄1 there exists input function u1 that keeps x1(t) = x̄1.

It follows that for any such input function u1

d
dt
H(x̄1, x2) =

[
∂H
∂x2

(x̄1, x2)
]⊤

ẋ2 =

[
∂H
∂x2

(x̄1, x2)
]⊤

(J2(x)e2 −R2(x , e2) + G2(x)u2) ≤ y⊤2 u2

Hence cyclo-passivity at port 2 with storage function H(x̄1, x2): energy is
always consumed at port 2 during cyclic motions.

Furthermore, for any t

y⊤1 (t)u1(t) = e⊤1 (t)G1

(
x̄1, x2(t)

)
u1(t) =

e⊤1 (t)
[
− J1

(
x̄1, x2(t)

)
e1(t) +R1

(
x̄1, x2(t), e1(t)

)]
≥ 0

’Static passivity’ at port 1.
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Summarizing

Theorem

For all cyclic motions with constant x1(t) = x̄1

∮
y⊤2 (t)u2(t)dt ≥ 0

Thus system is cyclo-passive at port 2 with storage function H(x̄1, x2).
Hence no net energy is produced at port 2. Also

y⊤1 (t)u1(t) ≥ 0

for all t, and thus static passivity at port 1.

Note: inequalities become equalities in case of no dissipation:

R1(x̄1, x2, e1) = 0, R2(x̄1, x2, e2) = 0

In analogy with thermodynamics all motions with x1(t) = x̄1 will be called
adiabatics (entropy is constant).

Arjan van der Schaft (Univ. of Groningen) Energy Conversion 17 / 38



Motions with constant e1 and y1

Consider a port-Hamiltonian system with G1 invertible and constant, and
∂2

∂x21
H(x1, x2) full rank. Since

ė1 =
∂2H

∂x21
(x1, x2)ẋ1 + other terms,

it follows, after substituting the equation for ẋ1, that u1 can be chosen
such that e1, or equivalently y1, is constant.

Furthermore, the partial Legendre transform of H with respect to x1 is

H∗

1 (e1, x2) = H(x1, x2)− e⊤1 x1, e1 =
∂H

∂x1
(x1, x2),

where x1 is expressed as a function of e1, x2 by means of e1 =
∂H
∂x1

(x1, x2)
(locally guaranteed). Has properties

∂H∗

1

∂e1
(e1, x2) = −x1,

∂H∗

1

∂x2
(e1, x2) =

∂H

∂x2
(x1, x2)

Arjan van der Schaft (Univ. of Groningen) Energy Conversion 18 / 38



Then for any u1 such that y1 = ȳ1 and e1 = ē1 constant

d
dt
H∗

1 (ē1, x2) = −x⊤1 ˙̄e1 + e⊤2 ẋ2

= e⊤2 J2(x1, x2)e2 − e⊤2 R2(x1, x2, e2) + e⊤2 G2(x1, x2)u2

≤ y⊤2 u2

Thus cyclo-passivity at port 2 with storage function H∗

1 (ē1, x2).

Furthermore

∫ τ
0 ȳ⊤1 u1(t)dt =

τ∫
0

ē⊤1 G1u1(t)dt =

τ∫
0

ē⊤1
[
ẋ1(t) +R1

(
x1(t), x2(t), ē1

)]
dt ≥ ē⊤1

(
x1(τ)− x1(0)

)

Thus cyclo-passivity at port 1 as well, with storage function ē⊤1 x1.
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Summarizing

Theorem

Consider a port-Hamiltonian system with G1 invertible and constant, and
∂2

∂x21
H(x1, x2) full rank. Then, for all cyclic motions with constant e1 = ē1,

and thus y1 = ȳ1:

∮
ȳ⊤1 u1(t)dt ≥ 0,

∮
y⊤2 (t)u2(t)dt ≥ 0

Hence no net energy is produced at port 2, nor at port 1.

Again, the inequalities become equalities in case

R1(x̄1, x2, e2) = 0, R2(x̄1, x2, e2) = 0

Motions for which e1 = ē1, and y1 = ȳ1, will be called isothermals.
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u2u1

gas

V

A

m

Figure: Gas-piston system with heat port




Ṡ

V̇

π̇


 =




0 0 0

0 0 A

0 −A 0







∂H

∂S
∂H

∂V
∂H

∂π



+




1 0

0 0

0 1




[
u1

u2

]
,

with Hamiltonian H(S ,V , π) = U(S ,V ) + 1
2mπ

2 and outputs

y1 =
∂U

∂S
(= T ), y2 =

π

m
.
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In case of an ideal gas

U(V ,S) =
CV e

S
CV

Ve
R
CV

,

where CV denotes the heat capacity (at constant volume) and R is the
universal gas constant. The partial Legendre transform with respect to S

is the Helmholtz free energy

CVT +W − T
(
CV lnT + R lnV + a

)
,

with a the entropy constant, and W an integration constant.

Thus for constant temperature T̄ the gas-piston system is cyclo-passive at
its mechanical port, with storage function given by

CV T̄ +W − T̄
(
CV ln T̄ + R lnV + a

)
+

1

2m
π2 = T̄R lnV +

1

2m
π2 + c

This is a consequence of the Second Law:

A transformation of a thermodynamic system whose only final result is to

transform into work heat extracted from a source which is at the same

temperature throughout is impossible.
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Electro-mechanical actuator

L(q)

m

V

I

q

F




ϕ̇

q̇

ṗ


 =




0 0 0

0 0 1

0 −1 0







∂H

∂ϕ
∂H

∂q
∂H

∂p



+




1 0

0 0

0 1




[
V

F

]
,

I =
∂H

∂ϕ
, v =

∂H

∂p
(= velocity of right mass)
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Since

H(ϕ, q, p) =
ϕ2

2L(q)
+

p2

2m

the partial Legendre transform wrt to ϕ is given as

H∗

ϕ(I , q, p) =
ϕ2

2L(q)
+

p2

2m
− ϕ

ϕ

L(q)
, ϕ = L(q)I

and thus

H∗

ϕ(I , q, p) = −
1

2
L(q)I 2 +

p2

2m

Hence for constant I = Ī , the actuator is cyclo-passive at its mechanical
port with storage function

−
1

2
L(q)Ī 2 +

p2

2m

(NB: a reasonable approximation of the inductance function L(q) is

L(q) =
a

b + q
)
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Synchronous machine/generator

θ ψr ∈ R
3

p ψs ∈ R
3

power ≈ 0

excitation system

ω
τ

Vs ∈ R
3

Is ∈ R
3

Vf If
mechanical

power
electrical
power

Not cyclo-passive at electrical port for constant angular velocity at
mechanical port.

However passive at mechanical port for constant stator currents at
electrical port.
(’No work produced for constant DC current’)
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Port-Hamiltonian model




ψ̇s

ψ̇r

ṗ

θ̇



=




−Rs 033 031 031

033 −Rr 031 031

013 013 −b −1

013 013 1 0







∂H

∂ψs

∂H

∂ψr

∂H

∂p
∂H

∂θ




+




I3 031 031

033 e1 031

013 0 1

013 0 0







Vs

Vf

τ




with outputs




Is

If

ω


 =




I3 033 031 031

013 e⊤1 0 0

013 013 1 0







∂H

∂ψs

∂H

∂ψr

∂H

∂p
∂H

∂θ



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with Hamiltonian

H(ψs , ψr , p, θ) =
1

2

[
ψ⊤
s ψ⊤

r

]
L−1(θ)

[
ψs

ψr

]
+

1

2Jr
p2,

where Jr > 0 is rotational inertia and L(θ) ≻ 0 is a 6× 6 positive-definite
symmetric inductance matrix.

For constant stator currents Is the machine is passive at the combined
mechanical and excitation port.

Storage function given by the partial Legendre transform H∗

ψs
(Is , ψr , p, θ)

of H(ψs , ψr , p, θ) with respect to ψs .

On the other hand, not cyclo-passive at electrical + excitation port for
constant velocity ω.
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Applying the Blondel-Park transformation the model reduces to a
6-dimensional port-Hamiltonian system in dq0 coordinates




ψ̇d

ψ̇q

ψ̇r

ṗ


 =




−

[
rs 0
0 rs

]
023

[
−ψq

ψd

]

032 −Rr 031
[
ψq −ψd

]
013 −d







∂Ĥ

∂ψd

∂Ĥ

∂ψq

∂Ĥ

∂ψr

∂Ĥ

∂p




+



I2 021 021
032 e1 031
012 0 1





Vdq

Vf

τ




with corresponding outputs.

The Blondel-Park transformation eliminates the dependence of the
magnetic energy on the rotor angle θ at the expense of the introduction of
non-zero off-diagonal terms in the J-matrix.

The system is not cyclo-passive at the mechanical port anymore.
(Constant Idq means there is an alternating current with constant
amplitude at the stator side, which does produce a mechanical torque. )
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The Carnot cycle for block-diagonal pH systems

Classical solution for energy conversion in this case: the Carnot cycle !

1 On the time-interval [0, τ1] consider an isothermal with respect to
port 1, corresponding to a constant e1 = ēh1 (h for hot).

2 On the time-interval [τ1, τ2] consider an adiabatic corresponding to a
constant x1 = x̄1.

3 On the time-interval [τ2, τ3] consider an isothermal corresponding to a
constant e1 = ēc1 (c for cold).

4 Finally, on the time-interval [τ3, τ4] consider an adiabatic
corresponding to a constant x1 = ¯̄x1.
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The efficiency of the cycle is the energy delivered via port 2 divided by the
supplied energy via port 1 during the first isothermal.

In case R1 and R2 are zero, the efficiency is equal to

ēh1∆
hx1 + ēc1∆

cx1

ēh1∆
hx1

= 1−
ēc1
ēh1
,

where ∆hx1 and ∆cx1 are the changes in x1 during the isothermals on
[0, τ1] and [τ2, τ3], satisfying

∆hx1 +∆cx1 = 0

Direct generalization of the Carnot efficiency equation.
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Energy conversion is much more easy in case there are off-diagonal blocks
in the interconnection matrix J.

Recall the DC-motor

[
ϕ̇

ṗ

]
=

([
0 −K

K 0

]
−

[
R 0
0 b

])



ϕ

L
p

J


+

[
1 0
0 1

] [
V

τ

]
,

[
I

ω

]
=

[
1 0
0 1

]



ϕ

L
p

J


 , H(ϕ, p) =

ϕ2

2L
+

p2

2J

Thanks to the gyration constant K , energy is easily flowing from the
electrical to the mechanical port (or conversely, in case of dynamo mode).

In fact, for constant I = Ī 6= 0 the system is not cyclo-passive at the
mechanical port; hence net energy can be extracted!
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Consider the system with I = Ī 6= 0. Then a storage function F for the
constrained system should satisfy

d

dt
F =

dF

dp

[
K
ϕ̄

L
− b

p

J
+ τ

]
≤ ωτ

for all τ , where ϕ̄
L
= Ī .

It follows that dF
dp

= ω, and thus that F (p) = p2

2J + const. After
substitution this implies

dF

dp

[
KĪ − b

p

J

]
= ωKĪ − bω2 ≤ 0

for all ω. However, this can only be true whenever Ī = 0.

Similar argument holds for the case ω = ω̄ 6= 0 (dynamo mode), showing
that the system is not one-port cyclo-passive at the electrical port either,
and net energy can be extracted.
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Caveat

Consider again the DC motor

[
ϕ̇

ṗ

]
=

[
−R −K

K −b

]



∂H

∂ϕ
∂H

∂p


+

[
1
0

]
V +

[
0
1

]
τ,

I =
∂H

∂ϕ

ω =
∂H

∂p

with

H(ϕ, p) =
ϕ2

2L
+

p2

2J
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Add an integrator θ̇ = ω, to obtain the 3-dimensional port-Hamiltonian
model



ϕ̇

ṗ

θ̇


 =



−R −K 0
K −b −1
0 1 0







∂H

∂ϕ
∂H

∂p
∂H

∂θ



+



1
0
0


V +



0
1
0


 τ,

I =
∂H

∂ϕ

ω =
∂H

∂p

where

H(φ, p, θ) = H(ϕ, p) =
ϕ2

2L
+

p2

2J

and thus
∂H

∂θ
= 0.
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Apply coordinate transformation ϕ̃ := ϕ+ Kθ, with p and θ unchanged.
This results in the block diagonal pH system



˙̃ϕ
ṗ

θ̇


 =



−R 0 0
0 −b −1
0 1 0







∂H̃

∂ϕ̃

∂H̃

∂p

∂H̃

∂θ




+



1
0
0


V +



0
1
0


 τ,

I =
∂H̃

∂ϕ̃
, ω =

∂H̃

∂p

with

H̃(ϕ̃, p, θ) =
(ϕ̃− Kθ)2

2L
+

p2

2J

Thus for constant I = Ī the extended pH system is cyclo-passive at the
mechanical port, with storage function

H̃∗(Ī , p, θ) = −
1

2
LĪ 2 +

p2

2J
− KĪθ
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Conclusions

• Energy conversion in general multiphysics systems can be studied
from a port-Hamiltonian perspective.

• Structural limitations to energy conversion in case of block-diagonal
pH systems. Similar to thermodynamics.

• Generalization of Carnot cycle to block-diagonal pH systems

◦ Develop strategies different from the Carnot cycle.
E.g., periodic temperature profiles.

◦ Transform the system to a non block-diagonal form by
state/input/output transformations (such as Blondel-Parks), or by
feedback: leads to matching equations similar to IDA-PBC control.

◦ Is there a suitable notion of optimal energy conversion?
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