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Earthquake engineering — hybrid testing

Earthquake engineering
Main goal: Make structures more resistant to earthquakes.

Problems:

e Highly complex system structures
with many uncertain parameters

e Actual tests are extremely expen-
sive
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Time-delay systems

2(t) = Aoz(t) + A12(t — 1) + Bul(t),
y(t) = C=(t)
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Time-delay systems

Z(t) = Apz(t) + Ar2(t — 7) + Bu(t),
y(t) = Cz(t)
Further motivation
e Delayed feedback/interconnection

e Transmission lines/propagation delay
e Hyperbolic equations

@ B. Unger.

Well-Posedness and Realization Theory for Delay Differential-Algebraic Equations
Dissertation, TU Berlin, 2020.
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Time-delay systems
2(t) = Aoz(t) + A12(t — 1) + Bul(t),
y(t) = C=(t)

Central question

What are port-Hamiltonian systems with delays?
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PH and

passivity




Port-Hamiltonian implies passivity

A(t) = Az(t) + Bul(t), 4(t) = (J — R)Hz(t) + Bu(t),
y(t) = Cz(1), y(t) = BTH=(t)

A system is called passive if there exists a state-dependent storage function
H: RN — R>0 such that the dissipation inequality

%"H(z(t)) < (y(1), u(t)

is satisfied for any ¢ > 0.
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. "18

(Technical details aside.) The following are equivalent:
* The system is passive.
* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. "18

(Technical details aside.) The following are equivalent:
* The system is passive.
* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

Z(t) = Az(t)+ Bul(t)
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. "18

(Technical details aside.) The following are equivalent:
* The system is passive.
* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

Hz(t) = HAz(t) + HBu(t)
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. 18
(Technical details aside.) The following are equivalent:

* The system is passive.

* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

Hz(t) = HAz(t) + HBu(t)
y(t) = BT Hz(t)
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. 18
(Technical details aside.) The following are equivalent:

* The system is passive.

* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

Hz(t) = HAz(t) + Gu(t)
y(t) = G 2(t)
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. 18
(Technical details aside.) The following are equivalent:

* The system is passive.

* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

Hz(t) = (skew(HA) — (—sym(HA)))z(t) + Gul(t)
y(t) = G 2(t)
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Passivity implies port-Hamiltonian

Theorem e.g. Beattie et al. 18
(Technical details aside.) The following are equivalent:

* The system is passive.

* The Kalman-Yakubovich-Popov (KYP) inequality

>0

W(H) = {—ATH—HA @ —HB}

C-B"H 0

has a symmetric positive definite solution H € RY*Y,

HZ(t) = (J — R)z(t) + Gu(t)
y(t) = G =(t)
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Equivalence

the pH structure

provides a simple
parameterization of
passive systems







A (very small) wish list for pH systems with time-delays

2(t) = Aoz(t) + A12(t — 1) + Bul(t),
y(t) = C=(t)
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A (very small) wish list for pH systems with time-delays

2(t) = Aoz(t) + A12(t — 7) + Bu(t),
y(t) = C=(t)
Port-Hamiltonian formulation for time-delay systems (wish list)

e Hamiltonian is explicitly included in the system dynamics
® pH systems vs. passivity
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A (very small) wish list for pH systems with time-delays

2(t) = Aoz(t) + A12(t — 7) + Bu(t),
y(t) = C=(t)
Port-Hamiltonian formulation for time-delay systems (wish list)

e Hamiltonian is explicitly included in the system dynamics
® pH systems vs. passivity
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A (very small) wish list for pH systems with time-delays

2(t) = Apz(t) + A12(t — ) + Bu(t),
y(t) = C=(t)

Port-Hamiltonian formulation for time-delay systems (wish list)
e Hamiltonian is explicitly included in the system dynamics
® pH systems vs. passivity

Roadmap:
e Formulate time-delay system as infinite-dimensional system (cf. Curtain/Zwart)
e Use operator KYP inequality to derive infinite-dimensional pH formulation
* Rewrite again as a time-delay system

B. Unger (U Stuttgart): Time-delay port-Hamiltonian systems



Time-delay systems as infinite-dimensional system

2(t) = Apz(t) + A12(t — 1) + Bul(t),
y(t) = C=(1),
z(t) = ¢(t) fort e [-7,0]
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Time-delay systems as infinite-dimensional system

2(t) = Apz(t) + A12(t — 1) + Bul(t),
y(t) = C=(1),
z(t) = ¢(t) fort e [-7,0]

Steps
e Appropriate Hilbert space: X := RN x Ly([—7,0]; RY)
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Time-delay systems as infinite-dimensional system

2(t) = Apz(t) + A12(t — 1) + Bul(t),
y(t) = C=(1),
z(t) = ¢(t) fort e [-7,0]

Steps
e Appropriate Hilbert space: X := RN x Ly([—7,0]; RY)
e QOperators

L) el e
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Time-delay systems as infinite-dimensional system

2(t) = Apz(t) + A12(t — 1) + Bul(t),
y(t) = Cz(1),
2(t) = ¢(t) fort e [-T,0]
Steps
e Appropriate Hilbert space: X := RN x Ly([—7,0]; RY)
e QOperators
Aoz + A B
N

D(A) = { { ] ‘ ¢is absolutely continuous, ¢ € Lo([— 770];RN)7}
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Time-delay systems as infinite-dimensional system

2(t) = Apz(t) + A12(t — 1) + Bul(t),
y(t) = C=(1),
z(t) = ¢(t) fort e [-7,0]

Equivalent operator formulation

& = Ax + Bu,
y=_Cx
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Operator KYP inequality

-W(Q)
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_[A4*@+0A 9B-cC*
~| Bro-c 0

<0

(1)



Operator KYP inequality

A* A OB -C*
-wio) =[5 H P <o
Adjoint operator
71 m _ { Ag g+ 9(0) }
Y —%(¢ — Al ql_; )

P — Aqu]l[_ﬂO] is absolutely continuous,
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d(z—Alq) € Lo([-7;0;RY) and 2(—7) = A{ ¢

} |

(1)



Operator KYP inequality

—MQ)—[

Adjoint operator

A Q+ QA OB—-C*

BQ-C 0 ]<0

A m B { Ag g +9(0) }
P —%(¢ - A1Tq]1[,r o)

d

D(A*) = { m € X

port-Hamiltonian system
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ds\*F

(2

P — A1 q1(_; o is absolutely continuous,
- Al q) € LQ([_T7O]7RN) and (_

Qi = QAx + QBu
y=_Czx

)=A1Tq}'

(1)



Operator KYP inequality

A Q+ QA OB—-C*

-wio) =[5 H P <o v

Adjoint operator
A m B { Ag g +9(0) }
P —%(¢ —A1Tq]1[,r o)

D(A*) = { m € X

port-Hamiltonian system

P — A1 q1(_; o is absolutely continuous,
)=Alq

4(z— Al q) € Lo([-7;0;RY) and z(—7

Qi = (J — R)x + QBu
y=Cx
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Assumptions on the Hamiltonian

Qz[% gg] Hz, >=;<[2},Q[ﬂ>=;ngz+£gg¢+; /_iasf(gg«m(s)ds
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Assumptions on the Hamiltonian

0
o- (& & uew-1([I] of]) - 1@t [ s @oras
Standard delay theory: Lyapunov-Krasovskii functional

0
H(z,¢) = %ZTle +[ #(s5) T Qsp(s)ds
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Assumptions on the Hamiltonian

0
o- (& & uew-1([I] of]) - 1@t [ s @oras
Standard delay theory: Lyapunov-Krasovskii functional
0
H(z,0) =32 Qiz+ | ¢(s) Qsd(s)ds

Crucial assumptions Q; = 0, Q3 = Q3 € RV*N
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Assumptions on the Hamiltonian

Qz[gg gg] H(z,¢>=;<[(ﬂ,Q[ﬂ>=;zTglz+zng¢+; /_i¢<s>T<Q3¢><s>ds

Standard delay theory: Lyapunov-Krasovskii functional
0
M) = 327 Qut [ 0(9) Quols)ds

Crucial assumptions Q; = 0, Q3 = Q3 € RV*N

o) T2 —2Qs0— Al Quilrg) ]
R[5| = -4 [M U e Qe o)
¢ : 7%(2Q3¢ - AIleﬂ[_ﬂo])
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Port-Hamiltonian systems with time-delays
A time-delay system of the form

Hy%2(t) = (J — R)z(t) — A12(t — 7) + Bu(t),

with Hamiltonian

H(z‘[t—m])) = 32(t)T Hi2(1) +/ 2(s) T Haz(s) ds

t—7

is called a port-Hamiltonian delay system, if H; > 0, H, > 0, J = —JT and

] [ 200
along any solution z.
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Some remarks

Hy2(t) = (J — R)z(t) — A12(t — 1) + Bul(t),

A port-Hamiltonian delay system satisfies the dissipation inequality.
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Some remarks

Hy2(t) = (J — R)z(t) — A12(t — 1) + Bul(t),

(Sufficient) Dissipation condition

A AR

e A; =0~ we recover classical pH systems (by setting Hy = 0)

Special cases

e 7 =0~ we recover classical pH systems (by setting H, = 0)
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Some remarks

Hy2(t) = (J — R)z(t) — A12(t — 1) + Bul(t),

(Sufficient) Dissipation condition

A AR

e A; =0~ we recover classical pH systems (by setting Hy = 0)

Special cases

e 7 =0~ we recover classical pH systems (by setting H, = 0)
e H, > 0~ we recover condition from the literature ([Niculescu, Lozano, 2001])
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Example

Hi2(t) = (J — R)2(t) — Avz(t — 1) + Bul(t),

(t) = —az(t) — B2(t — 7) + u(t),
y(t) = 2(t)
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Example

Hi2(t) = (J — R)2(t) — Avz(t — 1) + Bul(t),

SetHi=1,R=a, A1 =4, B=1
Consequences

°* R>0 = a>0

¢ Find n > 0 such that

a—n B
[ B n}zo
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Example

Hi2(t) = (J — R)2(t) — Avz(t — 1) + Bul(t),

SetHy=1,R=«a, A1 =3,B=1
Consequences

* R>0 = a>0

¢ Find n > 0 such that

[a—n 8

3 77} >0 <= necessary & sufficient condition for passivity
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First implications

(Sufficient) Dissipation condition

L(f mﬁ]T [RAIHz }2] [Z(f “)T)} >0
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First implications

(Sufficient) Dissipation condition

[R—H2 Al] .
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First implications

(Sufficient) Dissipation condition
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First implications

(Sufficient) Dissipation condition

Ri— S, =S| Zy Zy
—S;— —S3 | Z3 Zy
Z 71 |8 5
720 4l
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First implications

(Sufficient) Dissipation condition
R-S Z
>
7§

Rl — Sl - 52 Zl Z2
—S) 0 | Zs Zy
zl Z7 1S S,
Zy z)
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First implications

(Sufficient) Dissipation condition

0 0 | Zs Zs
zI Z] 1S 0
Zy  ZJ |0 0
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First implications

(Sufficient) Dissipation condition

R-S Z
Rl—S1 0 Zl 0
0 0 0 O
ZI 0[S 0
0 0 0 O
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First implications

(Sufficient) Dissipation condition

R-S Z
Rl—S1 0 Zl 0
0 0 0 O
ZI 0[S 0
0 0 0 O

~ Ker(R) C Ker(Z)
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First implications

(Sufficient) Dissipation condition

ig— 8 4
7 &=
Rl—S1 0 Zl 0
0 010 0
ZI 0[S 0
0 00 0

~ Ker(R) C Ker(Z)

Open questions
e When does suitable S (previously Hs) exists?
e How to construct such an S?
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Summary and challenges

Time-delay pH systems
e Rewrite time-delay system as infinite dimensional system
e Obtain pH formulation via operator KYP (assuming a special solution)
* Rewrite as time-delay system to obtain pH formulation for time-delay systems
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Summary and challenges

Time-delay pH systems
e Rewrite time-delay system as infinite dimensional system
e Obtain pH formulation via operator KYP (assuming a special solution)
* Rewrite as time-delay system to obtain pH formulation for time-delay systems

Many open questions
e S (Hs) notincluded in the system dynamics
® Only special solutions of the operator KYP ~~ time-dependent kernels
e What happens if delay is induced by delayed interconnection?
e Construction for actual application
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