### Port Maps for Irreversible Interface Relations

### Bernhard Maschke

<sup>(1)</sup> LAGEPP, Université Lyon 1, France

## Workshop "Trends on Dissipativity in Systems and Control" 23–25 May 2022 , Brig, Switzerland

#### Introduction

Port maps arizing from Poisson brackets Irreversible Hamiltonian systems Irreversible Port Hamiltonian Systems Conclusion



### Introduction

Bernhard Maschke Port Maps for Irreversible Interface Relations

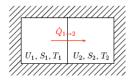
# Motivation : Port maps for Irreversible Port Hamiltonian Systems

- Irreversible Hamiltonian Sytems :
  - geometry represents the topology, the energy fluxes within and with its environment
  - represents the reversible and irreversible phenomena
- Port conjugated output not defined for Irreversible Port Hamiltonian Systems requires to distinguish
  - interface which are subject to irreversible phenomena such as Fourier's law or not
  - for such interface make appear the entropy creation at the interface and deduce the port maps

#### Introduction

Port maps arizing from Poisson brackets Irreversible Hamiltonian systems Irreversible Port Hamiltonian Systems Conclusion

## Heat exchanger : failure of Hamiltonian framework



Thermodynamic model given by Gibbs' relation :  $dU_i = T_i dS_i$  where  $T_i = \frac{\partial U_i}{\partial S_i}(S_i)$ , i = 1, 2

Heat flux due to conducting wall :  $\dot{Q}_{1\to 2} = \lambda (T_1 - T_2)$  with  $\lambda$  the heat conduction coefficient

Continuity of heat flux :  $\dot{Q}_{1\rightarrow 2} = -T_1 \frac{dS_i}{dt} = T_2 \frac{dS_2}{dt}$ lead to the entropy balance equations

$$\frac{d}{dt} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} = \begin{pmatrix} -\frac{\dot{Q}_{1\to 2}}{T_1} \\ \frac{\dot{Q}_{1\to 2}}{T_2} \end{pmatrix} = \lambda \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \begin{pmatrix} -T_2 \\ T_1 \end{pmatrix}$$

Heat exchanger : failure of Hamiltonian framework Heat conduction process : pseudo-Hamiltonian formulation

The Hamiltonian-like formulation :

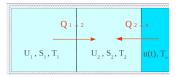
$$\frac{d}{dt} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} = \underbrace{\lambda \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{J(T)} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$

with  $T_i = \frac{\partial (U_1 + U_2)}{\partial S_i}(S) = \frac{\partial U_i}{\partial S_i}(S_i)$ .

- J(T) is skew-symmetric but depend on the temperature and not the entropy.
- 3 the map from the gradient of the total energy  $\frac{\partial(U_1+U_2)}{\partial S}$  to the generalized velocities is not linear!

### Heat exchanger with thermostat

Two systems 1 and 2 interact through a heat conducting conducting wall and system 2 interacts with a thermostat at temperature  $T_e$ : input map affine in the control ! Port conjugated output ?



The entropy balance equations

$$\begin{bmatrix} \dot{S}_1 \\ \dot{S}_2 \end{bmatrix} = \lambda \begin{bmatrix} \frac{T_2(S_2)}{T_1(S_1)} - 1 \\ \frac{T_1(S_1)}{T_2(S_2)} - 1 \end{bmatrix} + \lambda_e \begin{bmatrix} 0 \\ \frac{T_e(t)}{T_2(S_2)} - 1 \end{bmatrix}$$

where  $S_1$  and  $S_2$  are the entropies of subsystem 1 and 2,  $T_e(t)$  a time dependent external heat source and  $\lambda > 0$  and  $\lambda_e > 0$  denotes Fourier's heat conduction coefficients of the internal wall and the external wall.

### Complete the Irrreversible Port Hamiltonian Systems

Irreversible Port Hamiltonian Systems (IPHS) is the nonlinear control system

$$\frac{dx}{dt} = m\left(x, \frac{\partial U}{\partial x}, \frac{\partial S}{\partial x}\right) J \frac{\partial H}{\partial x}(x) + W\left(x, \frac{\partial H}{\partial x}\right) + g\left(x, \frac{\partial H}{\partial x}\right) u, \quad (1)$$

generated by two function H(x) and S(x) !

H. Ramırez Estay , B. Maschke and D. Sbarbaro, Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR, Chemical Engineering Science, Volume 89, pp. 223-234 15 February 2013

H. Ramırez Estay , B. Maschke and D. Sbarbaro, Irreversible port Hamiltonian systems, European Journal of Control, Special issue "Lagrangian and Hamiltonian methods for non-linear control", A. Macchelli and C . Secchi eds., , Volume 19, n° 6, pp.513-520, 2013

H. Ramırez, Y. Le Gorrec, B. Maschke, F. Couenne, Passivity Based Control of Irreversible Port Hamiltonian Systems, Automatica, Vol.64, pp. 105-111, Feb. 2016

### Port Hamiltonian systems: conjugated port maps

### Port Hamiltonian systems: conjugated port maps

### Port Hamiltonian systems

Port Hamiltonian Systems are non-linear control systems

$$\begin{pmatrix} \frac{dx}{dt} \\ -y \end{pmatrix} = \begin{pmatrix} J(x) & g(x) \\ -g(x)^{\top} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial x} \\ u \end{pmatrix}$$
(2)

defined by

- **(**) the state vector  $x \in \mathbb{R}^n = \mathscr{X}$  ,
- ② the Hamiltonian function H(x) :  $\mathscr{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$
- **③** the skew-symmetric structure matrix  $J(x) \in \mathbb{R}^n \times \mathbb{R}^n$
- the input matrix g(x)

The anti-adjoint maps defined by g(x) and  $-g^{\top}(x)$  define pairs of conjugated port variables (u, y) and the balance equation

$$\frac{dH}{dt} = y^\top u$$

### Port Hamiltonian systems

The map  $T^*\mathscr{X} \times U \to T\mathscr{X} \times Y$  defined by

$$\begin{pmatrix} J(x) & g(x) \\ -g(x)^{\top} & 0 \end{pmatrix}$$
(3)

extends the (pseudo-)Poisson bracket associated with the skew-symmetric matrix J(x) and may be seen as arizing from the (pseudo-)Hamiltonian system

$$\begin{pmatrix} \frac{dx}{dt} \\ \frac{d\xi}{dt} \end{pmatrix} = \begin{pmatrix} J(x) & g(x) \\ -g(x)^{\top} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial x}(x) \\ \frac{\partial H_{u}}{\partial \xi}(\xi) \end{pmatrix}$$

with  $\xi(t) \in \mathbb{R}^m$  is the state variable of the environment and Hamiltonian function being linear in the input u:

$$\bar{H}_u(\xi) = u^\top \xi \tag{4}$$

and projected parallel to the environment's state.

Irreversible Hamiltonian systems Canonical example : heat exchanger

### Irreversible Port Hamiltonian systems

### Irreversible Port Hamiltonian systems

Irreversible Hamiltonian systems Canonical example : heat exchanger

## A class of quasi-Hamiltonian systems : irreversible Hamiltonian systems

Irreversible HS are defined by the following dynamic equation

$$\dot{x} = \gamma\left(x, \frac{\partial U}{\partial x}\right) \underbrace{\frac{\partial S}{\partial x}(x)^{T} J \frac{\partial U}{\partial x}(x)}_{=\{S, U\}_{J}} J \frac{\partial U}{\partial x}(x)$$

with

- the state vector  $x \in \mathbb{R}^n$ , the energy function  $U(x) : \mathscr{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ and the entropy function  $S(x) : \mathscr{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ .
- 2 the constant skew-symmetric structure matrix  $J \in \mathbb{R}^n \times \mathbb{R}^n$
- **3** a positive definite function:  $\gamma(x, \frac{\partial U}{\partial x}) = \hat{\gamma}(x) : \mathscr{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}^*_+$ .

Irreversible Hamiltonian systems Canonical example : heat exchanger

# Irreversible Hamiltonian systems : energy and entropy balance equations

The conservation equation of the internal energy,

$$\frac{dU}{dt} = 0, \tag{5}$$

follows from the skew-symmetry of the structure matrix J.

The irreversible entropy production

$$\frac{dS}{dt} = \gamma\left(x, \frac{\partial U}{\partial x}\right) \{S, U\}_J^2 \ge 0$$

Irreversible Port Hamiltonian arize naturally for heat exchangers, Chemical reactors, etc..:

- the bracket  $\{S, H\}_J$  is the thermodynamic force
- the function  $\gamma\left(x,\frac{\partial U}{\partial x}\right)$  the irreversible phenomenon relation

Irreversible Hamiltonian systems Canonical example : heat exchanger

### Canonical example : the heat exchanger

### Canonical example: the heat exchanger

Irreversible Hamiltonian systems Canonical example : heat exchanger

### Heat conduction : irreversible Hamiltonian system

$$\frac{d}{dt}\begin{pmatrix}S_1\\S_2\end{pmatrix} = \lambda\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}T_1\\T_2\end{bmatrix} \\ = \underbrace{\lambda}_{=\gamma}\underbrace{(T_1 - T_2)}_{=\{S, U\}_J}\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\underbrace{(T_1\\T_2]}_{dU(S)}$$

with :

• internal energy U, co-energy variables :  $\frac{\partial U}{\partial S_i} = T_i(S_i)$ • entropy function :  $\mathscr{S} = S_1 + S_2$  and  $\frac{\partial \mathscr{S}}{\partial x}^{\top} J \frac{\partial U}{\partial x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = T_1 - T_2$  : driving force • positive function :  $\gamma \left(\frac{\partial U}{\partial S}\right) = \frac{\lambda}{T_1 T_2} > 0$  as  $T_1 > 0$  and  $T_2 > 0$  : Fourier's law

Irreversible Hamiltonian systems Canonical example : heat exchanger

Heat exchanger : internal energy and entropy balance equations Energy and entropy balance equations

Conservation of the total internal energy due to the skew-symmetry of J(T):

$$\frac{d}{dt}(U_1+U_2)=(T_1, T_2)\lambda\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}\begin{pmatrix}T_1\\T_2\end{pmatrix}=0$$

Increase of the total entropy due to the non-linear map :

$$\frac{d}{dt}(S_1+S_2)=(1,1)\lambda\left(\frac{1}{T_2}-\frac{1}{T_1}\right)\begin{pmatrix}0&-1\\1&0\end{pmatrix}\begin{pmatrix}T_1\\T_2\end{pmatrix}=\lambda\frac{(T_1-T_2)^2}{T_1T_2}\geq 0$$

Irreversible Hamiltonian systems Canonical example : heat exchanger

Reversible-Irreversible Hamiltonian systems

$$\frac{dx}{dt} = \left[\underbrace{\underbrace{J_0(x)}_{\text{reversible}} + \underbrace{\gamma\left(x, \frac{\partial H}{\partial x}\right)\left\{S, H\right\}_J J}_{\text{irreversible coupling}}\right] \frac{\partial U}{\partial x}(x)$$
(6)

where

(i)  $J_0(x)$  and J the structure matrix of a Poisson bracket (ii)  $\gamma(x, \frac{\partial H}{\partial x}) > 0$ (iii) the entropy function S(x) a Casimir function of the Poisson

structure matrix  $J_0(x)$ 

Satisfies the two balance equations:

- conservation equation of the internal energy,  $\frac{dU}{dt} = 0$ ,
- entropy balance equation with irreversible entropy production  $\frac{dS}{dt} = \gamma\left(x, \frac{\partial U}{\partial x}\right) \{S, U\}_{J}^{2} \ge 0$

Definition Example : Heat exchanger with thermostat

### Irreversible Port Hamiltonian systems

### Irreversible Port Hamiltonian systems

Definition Example : Heat exchanger with thermostat

### Port map arizing from a IHS: extended system

### Consider

- state variablex  $(t) \in \mathbb{R}^n$
- environment state  $\xi\left(t
  ight)\in\mathbb{R}^{m}$
- constant structure matrix defined by  $g \in \mathbb{R}^{n imes m}$

$$J_{\text{port}} = \left(\begin{array}{cc} 0 & g \\ -g^{\top} & 0 \end{array}\right)$$

energy function

$$H_{\text{tot}}(x,\xi) = H(x) + u^{\top}\xi$$
,  $u \in \mathbb{R}^m$ 

entropy function

$$S_{ ext{tot}}(x,\xi) = S(x) + au^{ op} \xi \ , \quad au \in \mathbb{R}^m$$

**Definition** Example : Heat exchanger with thermostat

# Port map arizing from a IHS: Irreversible Port Hamiltonian System

$$\begin{pmatrix} \frac{dx}{dt} \\ -y \end{pmatrix} = \gamma_{\text{port}} \left( x, \frac{\partial H}{\partial x}, u \right) \{S_{\text{tot}}, H_{\text{tot}}\}_{J_{\text{port}}} \underbrace{J_{\text{port}} \left( \begin{array}{c} \frac{\partial H}{\partial x} \\ u \end{array} \right)}_{= \left( \begin{array}{c} g u \\ -g^{\top} \frac{\partial H}{\partial x} \end{array} \right)}$$
  
where  $\{S_{\text{tot}}, H_{\text{tot}}\}_{J_{\text{port}}} = \left[ \left( g^{\top} \frac{\partial S}{\partial x} \right)^{\top} u - \tau^{\top} \left( g^{\top} \frac{\partial H}{\partial x} \right) \right]$   
•  $u = \frac{\partial H_{\text{tot}}(x,\xi)}{\partial \xi}$  and  $\tau = \frac{\partial S_{\text{tot}}(x,\xi)}{\partial \xi}$   
•  $\gamma_{\text{port}} \left( x, \frac{\partial H}{\partial x}, u \right)$  is a strictly positive function.

**Definition** Example : Heat exchanger with thermostat

### Irreversible Port Hamiltonian systems

### An Irreversible Port Hamiltonian system (IPHS)

$$\frac{dx}{dt} = \gamma\left(x, \frac{\partial H}{\partial x}\right) \{S, H\}_{J} J \frac{\partial H}{\partial x}(x)$$

$$+ \gamma_{\text{port}}\left(x, \frac{\partial H}{\partial x}, u\right) \left[ \left(g^{\top} \frac{\partial S}{\partial x}\right)^{\top} u - \tau^{\top} \left(g^{\top} \frac{\partial H}{\partial x}\right) \right] g u \quad (8)$$

$$y = \gamma_{\text{port}}\left(x, \frac{\partial H}{\partial x}, u\right) \left[ \left(g^{\top} \frac{\partial S}{\partial x}\right)^{\top} u - \tau^{\top} \left(g^{\top} \frac{\partial H}{\partial x}\right) \right] g^{\top} \frac{\partial H}{\partial x} (9)$$

(i) a real function  $\gamma_{\text{port}}\left(x, \frac{\partial H}{\partial x}, u\right)$ , strictly positive function (iv) the input vctor field  $g \in \mathbb{R}^{n \times m}$  and the vector  $\tau \in \mathbb{R}^m$  associated with the ports of the system.

**Definition** Example : Heat exchanger with thermostat

### Energy and entropy balance equations

The energy balance equation

$$\frac{dH}{dt} - y^{\top}u = 0$$

where  $y^{\top}u$  is the power flowing into the system The entropy balance equation

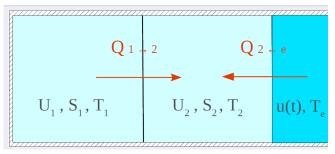
$$\begin{aligned} \frac{dS}{dt} - \tau^{\top} y &= \gamma \left( x, \frac{\partial U}{\partial x} \right) \{ S, U \}_{J}^{2} \\ &+ \gamma_{\text{port}} \left( x, \frac{\partial H}{\partial x}, u \right) \left[ \left( g^{\top} \frac{\partial S}{\partial x} \right)^{\top} u - \tau^{\top} \left( g^{\top} \frac{\partial H}{\partial x} \right) \right]^{2} \geq 0 \end{aligned}$$

where the term  $\tau^{\top} y$  corresponds to the entropy flowing out the environment (to the system).

Definition Example : Heat exchanger with thermostat

### 2 cells with thermostat

Two simple thermodynamic systems 1 and 2 interact through a heat conducting conducting wall and system 2 interacts with a thermostat at temperature  $T_e$ .



The entropy balance equations

$$\begin{bmatrix} \dot{S}_1\\ \dot{S}_2 \end{bmatrix} = \lambda \begin{bmatrix} \frac{T_2(S_2)}{T_1(S_1)} - 1\\ T_1(S_1) \end{bmatrix} + \lambda_e \begin{bmatrix} 0\\ \frac{T_e(t)}{T_e(t)} - 1 \end{bmatrix}$$
Bernhard Massible Port Maps for Irreversible Interface Relations

Definition Example : Heat exchanger with thermostat

Heat conduction : irreversible Hamiltonian system

$$\frac{d}{dt} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \frac{\lambda}{\underbrace{T_1 T_2}} \underbrace{(T_1 - T_2)}_{=\{S, U\}_J} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} T_1 \\ T_2 \end{bmatrix}}_{dU(S)} + \underbrace{\frac{\lambda_e}{T_2 u}}_{=\gamma_{\text{port}}(T_2, u)} \underbrace{(u - T_2)}_{=g} \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{=g} u$$

and output being the entropy flux leaving the environment ( with respect to the temperature  $u = T_e$  of the environment).

$$y = \frac{\lambda_e}{uT_2} \left[ (u - T_2) \right] \left[ \begin{array}{c} 0 & 1 \end{array} \right] \left[ \begin{array}{c} T_1 \\ T_2 \end{array} \right] = \frac{\lambda_e \left( u - T_2 \right)}{u}$$

with :

- the port map defined by the vector  $g=\left(egin{array}{c} 0\\ 1\end{array}
  ight)$
- input the temperature  $u=T_e$  of the environment and au=1
- function  $\gamma_{\text{port}}(T_2, u) = \frac{\lambda_e}{uT_2}$  (which is well-defined for u > 0)



### Conclusion

Bernhard Maschke Port Maps for Irreversible Interface Relations

### Conclusion

- We have discussed the Port maps defining the pairs of conjugated port variables:
  - for reversible Port Hamiltonian Systems as a projection of a coupled system with a state space representation of the environment with linear Hamiltonian function
  - for Irreversible Port Hamiltonian Systemswe have suhh-ggested an extension by introducing a second input related to the definition of an entropy function for the environment and derived the associated output port variable.
- Current and ongoing work:
  - develop time discretization schemes preserving the energy and entropy balance : with David Martin de Diego and Laurent Lefèvre
  - develop optimal control using the energy and entropy as cost functions: Timm Faulwasser, Friedrich Philipp, Manuel