Dissipative partial differential-algebraic equations

Birgit Jacob (Wuppertal) and Kirsten Morris (Waterloo)

Brig, May 25, 2022

MATHEMATICAL MODELLING, ANALYSIS AND COMPUTATIONAL MATHEMATICS

BERGISCHE UNIVERSITÄT WUPPERTAL

Finite-dimensional linear DAEs

$$\frac{d}{dt}Ex(t) = Ax(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$

• $E, A \in \mathbb{C}^{n \times n}, z_0 \in \mathbb{C}^n$, det $(\lambda E - A) \neq 0$ for some $\lambda \in \mathbb{C}$.

 $(E, A) \sim (\tilde{E}, \tilde{A})$, if T, S invertible exist: $TES = \tilde{E}, TAS = \tilde{A}$.

Weierstraß canonical form

 $(E, A) \sim \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$, where N is nilpotent.

Dissipativity $\frac{d}{dt} \|Ex(t)\|^2 \le 0 \iff \operatorname{Re} \langle Ex(t), Ax(t) \rangle \le 0.$

Infinite-dimensional DAEs

$$\frac{d}{dt}Ex(t) = Ax(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$

- \mathcal{X} and \mathcal{Z} are Hilbert spaces
- $E: \mathcal{X} \to \mathcal{Z}$ linear and bounded
- $A: \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{Z}$ densely defined and closed

$\blacktriangleright \ z_0 \in \mathcal{Z}$

• There exists $s \in \mathbb{C}$ such that sE - A is boundedly invertible

Example: Dzektser equation

$$\frac{\partial}{\partial t} \left(1 + \frac{\partial^2}{\partial \zeta^2} \right) x(\zeta, t) = \left(\frac{\partial^2}{\partial \zeta^2} + 2 \frac{\partial^4}{\partial \zeta^4} \right) x(\zeta, t),$$

t>0 and $\zeta\in(0,\pi)$, with boundary conditions

$$\begin{aligned} x(0,t) &= x(\pi,t) = 0, \quad t > 0\\ \frac{\partial^2 x}{\partial \zeta^2}(0,t) &= \frac{\partial^2 x}{\partial \zeta^2}(\pi,t) = 0, \quad t > 0. \end{aligned}$$

Let $\mathcal{Z} = L^2(0,\pi)$ and $\mathcal{X} = H^2(0,\pi) \cap H^1_0(0,\pi)$ with $\|x\|^2_{\mathcal{X}} = \|x''\|^2_{\mathcal{Z}}$, $E \in \mathcal{L}(\mathcal{X},\mathcal{Z})$ and $A : \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{Z}$ given by

$$\begin{aligned} Ex &= x + x'', \\ Ax &= x'' + 2x^{(4)}, \\ \mathcal{D}(A) &= \{ x \in H^4(0,\pi) \cap H^1_0(0,\pi) \mid x''(0) = x''(\pi) = 0 \}. \end{aligned}$$

What is known?

- Existence of solutions on a subspace: Yagi 1991, Thaller & Thaller 1996/2001, Favini & Yagi 1999/2004, Reis & Tischendorff 2005, Reis 2008, Showalter 2010, Trostorff 2020,
- "Weierstraß canonical form":

- **Thaller & Thaller 1996**: Investigate the splitting $\mathcal{X} = \ker E \oplus \overline{\operatorname{ran} E^*}$ and $\mathcal{Z} = \ker E^* \oplus \overline{\operatorname{ran} E}$.

- **Sviridyuk & Fedorov 2003**: Characterise solvability in Banach spaces and prove a canonical form.

- **Reis 2008**: Generalization of the Weierstraß canonical form. Requires the existence of certain projections.

Aim of this talk

Characterize DAEs $\frac{d}{dt}Ex(t) = Ax(t)$ such that

For $z_0 \in \operatorname{ran} E$, the DAE has a solution $x(\cdot)$: $\frac{d}{dt} \|Ex(t)\|^2 \leq 0$

 $\dot{x}(t) = Ax(t), \quad t \ge 0, \qquad x(0) = z_0.$

- \mathcal{X} is a Hilbert spaces, $z_0 \in \mathcal{X}$
- $A: \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{X}$ densely defined and closed
- There exists $s \in \mathbb{C}$ such that $(sI A)^{-1} \in \mathcal{L}(\mathcal{X})$

We call $x : [0, \infty) \to X$ a classical solution, if x is continuously differentiable and $\dot{x}(t) = Ax(t)$, $t \ge 0$, and $x(0) = z_0$. We call $x : [0, \infty) \to X$ a mild solution, if x is continuous and $x(t) = z_0 + A \int_0^t x(s) ds$ for $t \ge 0$.

Every classical solution is a mild solution.

The following assertions are equivalent:

- for all $z_0 \in \mathcal{X}$ there exists a unique mild solution.
- for all $z_0 \in \mathcal{D}(A)$ there exists a unique classical solution.

Infinite-dimensional ODE

 $\dot{x}(t) = Ax(t), \quad t \ge 0, \qquad x(0) = z_0.$

 \mathcal{X} Hilbert spaces, $z_0 \in \mathcal{X}$, $A : \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{X}$ densely defined & closed

Hille-Yosida Theorem

The following assertions are equivalent:

- for all $z_0 \in \mathcal{X}$ there exists a unique bounded mild solution.
- There is $K \ge 1$: $(0, \infty) \in \varrho(A)$ and $||(sI A)^{-n}||_{\mathcal{L}(\mathcal{X}, \mathcal{X})} \le \frac{K}{s^n}$ for $n \in \mathbb{N}$ and s > 0.

Lumer-Phillips Theorem

The following assertions are equivalent:

- For all z₀ ∈ X there exists a unique mild solution with non-increasing norm.
- Re $\langle Ax, x \rangle \leq 0$ for $x \in \mathcal{D}(A)$ and ran $(I A) = \mathcal{X}$.
- Re $\langle Ax, x \rangle \leq 0$ for $x \in \mathcal{D}(A)$ and Re $\langle A^*x, x \rangle \leq 0$ for $x \in \mathcal{D}(A^*)$.

E-radiality (Sviridyuk & Fedorov)

Resolvent set $\rho(E, A) := \{s \in \mathbb{C} \mid (sE - A)^{-1} \in \mathcal{L}(\mathcal{Z}, \mathcal{X})\}$

 $R^{E}(s, A) = (sE - A)^{-1}E, \quad L^{E}(s, A) = E(sE - A)^{-1},$

The operator A is E-radial, if

▶ $s \in \rho(E, A)$ for all real s > 0,

 \blacktriangleright there exists K > 0 such that for $n \in \mathbb{N}$ and for s > 0

$$\|(R^E(s,A))^n\|_{\mathcal{L}(\mathcal{X},\mathcal{X})} \le \frac{K}{s^n}, \quad \|(L^E(s,A))^n\|_{\mathcal{L}(\mathcal{Z},\mathcal{Z})} \le \frac{K}{s^n}$$

Define for some $\alpha \in \rho(E, A)$,

$$\mathcal{X}^{0} = \ker R^{E}(\alpha, A) = \ker E, \qquad \qquad \mathcal{X}^{1} = \overline{\operatorname{ran} R^{E}(\alpha, A)},$$
$$\mathcal{Z}^{0} = \ker L^{E}(\alpha, A), \qquad \qquad \mathcal{Z}^{1} = \overline{\operatorname{ran} L^{E}(\alpha, A)}.$$

These spaces are independent of the choice of α .

E-radiality

$$\mathcal{X}^{0} = \ker R^{E}(\alpha, A) = \ker E, \qquad \qquad \mathcal{X}^{1} = \overline{\operatorname{ran} R^{E}(\alpha, A)},$$
$$\mathcal{Z}^{0} = \ker L^{E}(\alpha, A), \qquad \qquad \mathcal{Z}^{1} = \overline{\operatorname{ran} L^{E}(\alpha, A)}.$$

If, A is E-radial, then we have:

X = X⁰ ⊕ X¹ and Z = Z⁰ ⊕ Z¹.
P : X → X defined by Px := lim_{s→∞} sR^E(s, A)x is a projection with ker P = X⁰ and ran P = X¹,
Q : Z → Z defined by Qz := lim_{s→∞} sL^E(s, A)z is a projection with ker Q = Z⁰ and ran Q = Z¹,
for all x ∈ D(A), Px ∈ D(A) and APx = QAx,
for all x ∈ X, EPx = QEx.

E-radiality

Let A be *E*-radial. Then the operators

$$\tilde{P} = \begin{bmatrix} I - P \\ P \end{bmatrix} \in \mathcal{L}(\mathcal{X}, \mathcal{X}^0 \times \mathcal{X}^1), \quad \tilde{Q} = \begin{bmatrix} I - Q \\ Q \end{bmatrix} \in \mathcal{L}(\mathcal{Z}, \mathcal{Z}^0 \times \mathcal{Z}^1),$$

are bounded invertible.

$$\frac{d}{dt}Ez = Az \quad \Longleftrightarrow \qquad \frac{d}{dt}\tilde{Q}E\tilde{P}^{-1}\begin{bmatrix}z_0\\z_1\end{bmatrix} = \tilde{Q}A\tilde{P}^{-1}\begin{bmatrix}z_0\\z_1\end{bmatrix}$$
$$\iff \quad \frac{d}{dt}\begin{bmatrix}E_0 & 0\\0 & E_1\end{bmatrix}\begin{bmatrix}z_0\\z_1\end{bmatrix} = \begin{bmatrix}A_0 & 0\\0 & A_1\end{bmatrix}\begin{bmatrix}z_0\\z_1\end{bmatrix}$$

If additionally ran E is closed, then we have:

- \blacktriangleright $E_0 \in \mathcal{L}(\mathcal{X}^0, \mathcal{Z}^0)$ with $E_0 = 0$,
- $E_1 \in \mathcal{L}(\mathcal{X}^1, \mathcal{Z}^1)$ is boundedly invertible.
- $A_0: D(A_0) \subset \mathcal{X}^0 \to \mathcal{Z}^0$ is densely defined, closed & boundedly invertible.
- $A_1: D(A_1) \subset \mathcal{X}^1 \to \mathcal{Z}^1$ is densely defined and closed.

E-radiality

$$\frac{d}{dt}Ex(t) = Ax(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$

- ▶ \mathcal{X} and \mathcal{Z} are Hilbert spaces, $z_0 \in \mathcal{Z}$
- $E: \mathcal{X} \to \mathcal{Z}$ linear, bounded with closed range
- $A: \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{Z}$ densely defined and closed
- ► (*E*-radial) there exists K > 0 such that for $n \in \mathbb{N}$ and s > 0 $\|(R^E(s, A))^n\|_{\mathcal{L}(\mathcal{X}, \mathcal{X})} \leq \frac{K}{s^n}, \quad \|(L^E(s, A))^n\|_{\mathcal{L}(\mathcal{Z}, \mathcal{Z})} \leq \frac{K}{s^n}$

Theorem

There exists invertible operators $T \in L(\mathcal{Z}, \mathcal{Z})$ and $S \in L(\mathcal{X}, \mathcal{X})$:

$$TES = \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \qquad TAS = \begin{bmatrix} I & 0 \\ 0 & A_1 E_1^{-1} \end{bmatrix}.$$

Moreover, the reduced system $\dot{z_1}(t) = A_1 E_1^{-1} z_1(t)$, $t \ge 0$, $z_1(0) = z$, has a unique mild solution for every $z \in \mathbb{Z}_1$. If K = 1, then the solutions are non-increasing in norm.

$$\frac{d}{dt}Ex(t)=Ax(t),\quad t\geq 0,\qquad Ex(0)=z_0$$
 We have (formally) for classical solutions

$$\frac{d}{dt} \|Ex(t)\|^2 = 2 \operatorname{Re} \left\langle Ex(t), Ax(t) \right\rangle$$

and for s > 0 and $x \in \mathcal{D}(A)$

$$\begin{aligned} \|(sE - A)x\|_{\mathcal{Z}} &\geq s\|Ex\|_{\mathcal{Z}} &\iff \\ s^2\|Ex\|_{\mathcal{Z}}^2 - 2s\operatorname{Re}\langle Ex, Ax\rangle + \|Ax\|_{\mathcal{Z}}^2 &\geq s^2\|Ex\|_{\mathcal{Z}}^2 &\iff \\ \operatorname{Re}\langle Ex, Ax\rangle &\leq \frac{1}{s}\|Ax\|_{\mathcal{Z}}^2 \end{aligned}$$

Let $(0,\infty) \in \varrho(E,A)$. The following are equivalent

•
$$\operatorname{Re} \langle Ex, Ax \rangle \leq 0$$
 for $x \in \mathcal{D}(A)$.

$$|| (sE - A)x ||_{\mathcal{Z}} \ge s ||Ex||_{\mathcal{Z}} \text{ for every } s > 0, x \in \mathcal{D}(A).$$

•
$$||E(sE-A)^{-1}|| \leq \frac{1}{s}$$
 for every $s > 0$.

.

$$\frac{d}{dt}Ex(t) = Ax(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$

- \triangleright \mathcal{X} and \mathcal{Z} are Hilbert spaces, $z_0 \in \mathcal{Z}$
- \blacktriangleright $E: \mathcal{X} \rightarrow \mathcal{Z}$ linear, bounded with closed range
- $A: \mathcal{D}(A) \subset \mathcal{X} \to \mathcal{Z}$ densely defined and closed
- $\lambda \in \varrho(E, A)$ for some $\lambda > 0$ and

$$\operatorname{Re} \langle Ax, Ex \rangle_{\mathcal{Z}} \le 0, \quad x \in \mathcal{D}(A), \\ \operatorname{Re} \langle A^*x, E^*x \rangle_{\mathcal{X}} \le 0, \quad x \in \mathcal{D}(A^*), \end{cases}$$

Theorem

Moreover.

There exists invertible operators $T \in L(\mathcal{Z}, \mathcal{Z})$ and $S \in L(\mathcal{X}, \mathcal{X})$:

$$TES = \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \qquad TAS = \begin{bmatrix} I & 0 \\ 0 & A_1E_1^{-1} \end{bmatrix}.$$

Moreover, the reduced system $\dot{z_1}(t) = A_1E_1^{-1}z_1(t), t \ge 0, z_1(0) = z$, has for every $z \in \mathbb{Z}_1$ unique mild solution.

Further, every classical solution of the DAE satisfies $\frac{d}{dt} ||Ex(t)||^2 \leq 0$.

Can this be generalized to higher nilpotency degree?

So far: N = 0, that is, the nilpotency index is 0 or 1.

Approach can be generalized

p-E-radial ($p \in \mathbb{N}$) instead of E-radial: There exists K > 0 such that for $n \in \mathbb{N}$ and $s_1, \ldots, s_p > 0$

$$\left\| \left(\prod_{q=0}^{p} R^{E}(s_{q}, A) \right)^{n} \right\|_{\mathcal{L}(\mathcal{X}, \mathcal{X})} \leq K \prod_{q=0}^{p} \frac{1}{s_{q}^{n}},$$
$$\left\| \left(\prod_{q=0}^{p} L^{E}(s_{q}, A) \right)^{n} \right\|_{\mathcal{L}(\mathcal{Z}, \mathcal{Z})} \leq K \prod_{q=0}^{p} \frac{1}{s_{q}^{n}}$$

Then

$$TES^{-1} = \begin{bmatrix} N & 0\\ 0 & I \end{bmatrix},$$

Jacob & Morris, dissipative PDAEs

Example: Dzektser equation

$$\begin{split} \frac{\partial}{\partial t} \left(1 + \frac{\partial^2}{\partial \zeta^2} \right) x(\zeta, t) &= \left(\frac{\partial^2}{\partial \zeta^2} + 2\frac{\partial^4}{\partial \zeta^4} \right) x(\zeta, t), \quad t > 0, \zeta \in (0, \pi) \\ &\quad x(0, t) = x(\pi, t) = 0, \quad t > 0 \\ &\quad \frac{\partial^2 x}{\partial \zeta^2}(0, t) = \frac{\partial^2 x}{\partial \zeta^2}(\pi, t) = 0, \quad t > 0. \end{split}$$
Let $\mathcal{Z} = L^2(0, \pi)$ and $\mathcal{X} = H^2(0, \pi) \cap H_0^1(0, \pi)$ with $||x||_{\mathcal{X}}^2 = ||x''||_{\mathcal{Z}}^2,$
 $Ex = x + x'',$
 $Ax = x'' + 2x^{(4)},$
 $\mathcal{D}(A) = \{x \in H^4(0, \pi) \cap H_0^1(0, \pi) \mid x''(0) = x''(\pi) = 0\}.$
For $x \in \mathcal{D}(A)$ we calculate
 $\operatorname{Re} \langle Ax, Ex \rangle_{\mathcal{Z}} = \operatorname{Re} \int_0^{\pi} (x'' + 2x^{(4)})(\overline{x} + \overline{x}'') d\zeta$
 $&= -||x'||_{L^2(0,\pi)}^2 + ||x''||_{L^2(0,\pi)}^2 - 2||x^{(3)}||_{L^2(0,\pi)}^2 - 2\operatorname{Re} \int_0^{\pi} x^{(3)} \overline{x}' dx$
 $&\leq ||x''||_{L^2(0,\pi)}^2 - ||x^{(3)}||_{L^2(0,\pi)}^2$

14/19

Example: Dzektser equation

It is easy to see that $1 \in \varrho(E, A)$. Next we calculate $A^* : \mathcal{D}(A^*) \subset \mathcal{Z} \to \mathcal{X}$. Note that $S : \mathcal{X} \to \mathcal{Z}$ given by Sf := f'' is an isometric isomorphism with

$$(S^{-1}f)(x) = \int_0^x (x-t)f(t)dt - \frac{x}{\pi} \int_0^\pi (\pi-t)f(t)dt.$$

Then $A^*z = S^{-1}z + 2z$ for $z \in \mathcal{X}$. For $x \in \mathcal{D}(A^*) = \mathcal{X}$ and $y = S^{-1}x$ we calculate

$$\operatorname{Re} \langle A^* x, E^* x \rangle_{\mathcal{X}} = \operatorname{Re} \langle EA^* x, x \rangle_{\mathcal{Z}}$$

= $\operatorname{Re} \int_0^{\pi} (S^{-1}x + x + 2x + 2x'') \overline{x} d\zeta$
= $\operatorname{Re} \int_0^{\pi} (y + y'' + 2y'' + 2y^{(4)}) \overline{y''} d\zeta$
= $- \|y'\|_{\mathcal{Z}}^2 + \|y''\|_{\mathcal{Z}}^2$
- $2 \operatorname{Re} \int_0^{\pi} y' \overline{y^{(3)}} d\zeta - 2\|y^{(3)}\|_{\mathcal{Z}}^2$
= $\|y''\|_{\mathcal{Z}}^2 - \|y^{(3)}\|_{\mathcal{Z}}^2$
 $\leq 0.$

$$\frac{d}{dt}\left(\underbrace{\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}}_{E} x(t)\right) = \underbrace{\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}}_{A} x(t), \qquad t > 0,$$

 $\begin{array}{l} A_i:\mathcal{D}(A_i)\subset Z\to Z \text{ closed \& densely defined, } \mathcal{X}=\mathcal{Z}=Z\times Z,\\ \mathcal{D}(A)=(\mathcal{D}(A_1)\cap\mathcal{D}(A_3))\times(\mathcal{D}(A_2)\cap\mathcal{D}(A_4)). \end{array}$

- ► Let $0 \in \varrho(A_4)$, $\mathcal{D}(A_4) \subset \mathcal{D}(A_2)$ and $\mathcal{D}(A_4^*) \subset \mathcal{D}(A_3^*)$ and $\overline{A_2A_4^{-1}A_3} \in \mathcal{L}(Z)$.
- ▶ Let there exist $M \ge 1$ and $\omega \in \mathbb{R}$ such that for every $s > \omega$, $s \in \varrho(A_1)$ and $||(s - A_1)^{-n}|| \le \frac{M}{(s - \omega)^n}$, $s > \omega, n \in \mathbb{N}$.

Then $\overline{A} - \omega_0 E$ is *E*-radial and ran *E* is closed.

The projections P and Q for this class of systems are given by

$$P\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}I & 0\\-\overline{A_4^{-1}A_3} & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$$

and

$$Q\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}I & -A_2A_4^{-1}\\0 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Finite-dimensional linear Hamiltonian DAEs

$$\frac{d}{dt}Ex(t) = AQx(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$
$$H(x) = \langle x, E^*Qx \rangle$$

► *E*, *Q*, $A \in \mathbb{C}^{n \times n}$, $z_0 \in \mathbb{C}^n$, det $(\lambda E - AQ) \neq 0$ for some $\lambda \in \mathbb{C}$, $E^*Q = Q^*E \ge 0$.

Dissipativity

$$\frac{d}{dt}H(x) \leq 0 \iff A = J - R$$
 with $J^* = -J$ and $R^* = R \geq 0$

Dissipative Hamiltonian DAE

$$\frac{d}{dt} Ex(t) = AQx(t), \quad t \ge 0, \qquad Ex(0) = z_0.$$
$$H(x) = \langle x, E^*Qx \rangle$$

• $E \in L(\mathcal{X}, \mathcal{Z})$ closed range, $Q \in L(\mathcal{X}, \mathcal{Z})$ invertible with $E^*Q = Q^*E \ge 0$

- $\blacktriangleright A: \mathcal{D}(A) \subset \mathcal{Z} \to \mathcal{Z} \text{ closed \& } \operatorname{Re} \langle Ax, x \rangle \leq 0, x \in \mathcal{D}(A)$
- There exists $s \in \mathbb{C}$ such that sE AQ is boundedly invertible

Then there is $X \in L(\mathcal{Z}, \mathcal{Z})$ invertible, X > 0: $E^*XE = E^*Q \& H(x) = \langle Ex, XEx \rangle.$

Theorem

Suppose $\operatorname{Re} \langle A^*x, x \rangle \leq 0$, $x \in \mathcal{D}(A^*)$. Then there exists invertible operators $T \in L(\mathcal{Z}, \mathcal{Z})$ and $S \in L(\mathcal{X}, \mathcal{X})$:

$$TES = \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix}, \qquad TAQS = \begin{bmatrix} I & 0 \\ 0 & A_1E_1^{-1} \end{bmatrix}.$$

The reduced system $\dot{z}_1(t) = A_1 E_1^{-1} z_1(t)$, has unique mild solutions. Further, every classical solution of the DAE satisfies $\frac{d}{dt} H(x(t)) \leq 0$.

Conclusions and future work

We characterized DAEs $\frac{d}{dt}Ex(t) = Ax(t)$ such that

- ▶ For $x(0) \in \operatorname{ran} E$, the DAE has a solution $x(\cdot)$: $\frac{d}{dt} ||Ex(t)||^2 \le 0$
- $\blacktriangleright (E, A) \sim \left(\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & A_1 \end{bmatrix} \right)$
- ▶ We generalized Lumer-Phillips Theorem for infinite DAEs.

Future Work:

- port-Hamiltonian DAEs in infinite-dimensional systems
- port-Hamiltonian boundary control DAEs

B.J. and Kirsten Morris: On solvability of dissipative partial differential-algebraic equations, appears in : IEEE Control Systems Letters, 2022

Thanks for your attention!