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Finite-dimensional linear DAEs

%Ex(t) = Ax(t), t>0, Ez(0) = 2.
> E, AecC"m" 2y C", det(AE — A) # 0 for some A € C.

(E,A) ~ (E,A), if T, S invertible exist: TES = E, TAS = A.

(B, A) ~ ([LX],149]), where N is nilpotent.

9 Ez(t)|2 <0 <= Re(Bx(t), Az(t)) < 0. ;}:
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Infinite-dimensional DAEs

%Ex(t) = Ax(t), t>0, Ex(0) = 2.

X and Z are Hilbert spaces

E : X — Z linear and bounded

A:D(A) C X — Z densely defined and closed

z0 € Z

There exists s € C such that sE — A is boundedly invertible
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Example: Dzektser equation

2 (1 )= (rea )
t >0 and ¢ € (0,7), with boundary conditions
z(0,t) = x(m,t) =0, t>0
gza;(o,t) = @(w,t) =0, t>0.

Let Z = L?(0,7) and X = H?(0,7) N H(0,7) with
|z||3 = ||2"]|%, F € L(X,Z) and A: D(A) C X — Z given by

Ex=x+2",

Az =2" + 2:6(4),

D(A) = {z € H*0,7) N H}(0,7) | 2”(0) = 2" (x) = 0}.
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» Existence of solutions on a subspace: Yagi 1991,
Thaller & Thaller 1996,/2001, Favini & Yagi 1999,/2004,
Reis & Tischendorff 2005, Reis 2008, Showalter 2010, Trostorff
2020, .....

» "WeierstraB canonical form":

- Thaller & Thaller 1996: Investigate the splitting
X =ker E® ran E* and Z = ker E* & ran F.

- Sviridyuk & Fedorov 2003: Characterise solvability in Banach
spaces and prove a canonical form.

- Reis 2008: Generalization of the WeierstraB canonical form.
Requires the existence of certain projections.

Aim of this talk
Characterize DAEs 4 Ez(t) = Axz(t) such that ///-_—=.

> For z) € ran E, the DAE has a solution z(-): %||Ex(t)[|> <0 ////E
> (5.4 ~ (591,13 %
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Infinite-dimensional ODE

&(t) = Ax(t), t>0, z(0) = 2.

> X is a Hilbert spaces, zp € X
> A:D(A) C X = X densely defined and closed
» There exists s € C such that (sI — A)~! € L(X)

We call 2 : [0,00) — X a classical solution, if 2 is continuously
differentiable and @(t) = Ax(t), t > 0, and :(0) = zo.

We call 2 : [0,00) — X a mild solution, if  is continuous and
z(t) = 29 + Afot:z:(s) ds for t > 0.

Every classical solution is a mild solution.

N
Min

The following assertions are equivalent:
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» for all zyg € X there exists a unique mild solution.
» for all zy € D(A) there exists a unique classical solution.
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Infinite-dimensional ODE

(t) = Azx(t), t>0, x(0) = zp.
X Hilbert spaces, zp € X, A: D(A) C X — X densely defined & closed

The following assertions are equivalent:
» for all zg € X there exists a unique bounded mild solution.
> Thereis K > 1: (0,00) € o(A) and ||(s] — A)~"||z(x,x) < & for
n € Nand s > 0.

The following assertions are equivalent:

» for all zg € X there exists a unique mild solution with
non-increasing norm.

» Re(Az,z) <0 forz € D(A) and ran (I — A) =
» Re(Az,z) <0 for 2 € D(A) and Re (A*z, z) <

N
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0 for x € D(A").
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FE-radiality (Sviridyuk & Fedorov)

Resolvent set o(F, A):={sc C|(sE—A)"' € L(Z,X)}
RE(s,A) = (sE—A)'E, LP(s,A)=FE(sE—A)™",

The operator A is E-radial, if
» seo(E,A) for all real s >0,

» there exists K > 0 such that for n € N and for s > 0

n K " K
I(RE (s, A))" | (ae,20) < = I(LZ (s, A)" [l 2(z.2) < o
Define for some « € o(E, A),
X° = ker R¥(a, A) = ker E, X! = ran RE(a, A), ////9/‘—:i
Y —
2% = ker L¥(a, A), Z! = ran LE(a, A).

N\
N

These spaces are independent of the choice of a.
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E-radiality

X0 = ker R¥ (o, A) = ker E, X! = ran RE(a, A),
2% =ker L¥(a, A), Z' = ran LE(a, A).

If, A is E-radial, then we have:
> X =1 ! and Z=20g 2"
> P:X — X defined by Pz := lim sR”(s, A)z is a projection with
S§— 00
ker P = X% and ran P = X!,
> Q:Z — Z defined by Q= := lim sL”(s, A)z is a projection with
§— 00
ker@Q = Z° and ran@Q = Z',
» for all x € D(A), Px € D(A) and APx = QAxz,
» forallx € X, EPx = QF«x.

N\
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E-radiality

Let A be E-radial. Then the operators

P = p

- [I—P
Q

} € LA, A0 x XY, 0= [I_ Q] € £(2,2° x 2V,
are bounded invertible.

d d ~ -~ % ~ = z
—Ez=A —QEP~ |7 =QAP~ 1|7
acTr = T [zl] @ |:Zl

i Ey O 20| Ag 0 20
dt | 0 Ei||z1| |0 A |z
If additionally ran ' is closed, then we have:

» Fy € E(XO,ZO) with £y = 0,

> F; € L(X?T, 21 is boundedly invertible. ///;_é_
> Ay :D(Ag) € X% — Z0 is densely defined, closed & boundedly //9/,5

invertible, V7=
> Ay :D(A;)) € X' — Z'is densely defined and closed. ////é
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E-radiality

d

Bt = Ax(t), t20,  Ex(0) = %.
» X and Z are Hilbert spaces, zg € Z

» FE:X — Z linear, bounded with closed range

» A:D(A) C X — Z densely defined and closed

» (E-radial) there exists ' > 0 such that for n € N and s > 0
I(RE (s, )"l ee,xy < wey L (s, A) ez 2) < o

There exists invertible operators T € L(Z,Z) and S € L(X,X):

0 0 1 0
res=[0 %), mas=[ 0]

Y

) %=
Moreover, the reduced system z1(t) = A1 Ey "21(t), t > 0, 21(0) = 2, has ',//’—F=
a unique mild solution for every z € Z;. % s
If K =1, then the solutions are non-increasing in norm. /%=
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Dissipative DAE

%Em(t) —Ax(t), t>0,  E2(0) = 2.

We have (formally) for classical solutions

d

7 1E2@)* = 2Re (Ex(t), Ax(t))
and for s > 0 and = € D(A)

[(sE — A)z|z > s||Ex||z =
82||Em||22 — 2sRe (Ex, Ax) + ||Ax||23 > SQHExHQZ —

Re (Ex, Az) < 1||Aac||25
s

Let (0,00) € o(E, A). The following are equivalent

Y .=
» Re(Ez, Az) <0 for x € D(A). ////E
Y
> |[(sE — A)z||z > s||Ex| z for every s > 0, z € D(A). g//},E__
> |E(sE — A)~!|| < 1 for every s > 0. Y4
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Dissipative DAE

%Em(t) = Az(t), t>0,  FExz(0)=z.

» X and Z are Hilbert spaces, zg € Z

» E: X — Z linear, bounded with closed range
» A:D(A) C X — Z densely defined and closed
> )\ e o(E,A) for some A > 0 and

Re(Az,Ex)z <0, x € D(A),
Re(A*x, E*x)x» <0, x € D(A"),

There exists invertible operators T' € L(Z,Z) and S € L(X, X):

TES:[O 0], TASz[I ; ]

0 I 0 A B! Y. .=

. q %, =

Moreover, the reduc_ed syst.em Z1 (t) =A1E] z(t), t >0, 21(0) = z, has ;/’//—E
for every z € Z1 unique mild solution. % %
Further, every classical solution of the DAE satisfies %HEgc(t)H2 <0. //IF
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Can this be generalized to higher nilpotency degree?

So far: N =0, that is, the nilpotency index is 0 or 1.

p-E-radial (p € N) instead of E-radial: There exists £ > 0 such

that for n € Nand s1,...,5, >0
p " 1
E
[T BZ(s4.4) <K[].
=0 L(X,X) ¢=0 4
p P " p 1
TTL2%(sq:4) <K][
=0 £(Z,2) q=0 4
oy =
Then ) N 0o /{//'I/E_‘
TES™! = [o I} : %%‘
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Example: Dzektser equation

0 o? o? o
o (14 5 ) 060 = (5 + 207 ) al6.0h 1> 0.c€O,m)

¢t
z(0,t) = x(m,t) =0, t>0
O 0%
0,t t)=0, t>0.
agg ( ) acg (7T ) ’ >
Let Z = L?(0,m) and X = H?(0,7) N H (0, 7) with ||z||% = ||=”]%,
Ex=a2+2",

Az =" + 2m(4),
D(A) = {xz € H*(0,7) N Hy(0,7) | " (0) = 2’ (7) = 0}.
For = € D(A) we calculate

Re (Az,Fx)z = Re / (2" + 22 =@ + 7")dC¢
0

2 2 3 2 3)— 4
= o0y + " 0,7y = 2@ oy — 2R [ “x'dc// &
0

< |\55”||2L?(0,7r) - ||95(3>Hi2(0,w) /}
<0. //t_
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Example: Dzektser equation

It Is easy to see that 1 € p(E, A). Next we calculate A* : D(A™) C Z — X.
Note that S : X — Z given by Sf := f” is an isometric isomorphism with

™

(57 0@ = [ @i -2 ["@ s

Then A*2=S"'2+2zfor2€ X. Forz € D(A*) = X and y = S~ 'z we
calculate

Re(A"z,E"z)x = Re(FA™z,x)z

Re / (S™'e + @+ 20 + 22")Td¢
0

Re / (y+y" +2y" +2y)y7d¢
0

Iy 1% + 1%
72Re/ YYD dC — 2y 1% .3

0 yZ
Iy 1% — Iy 1% by —

<0.

Jacob & Morri issipative PDAEs



Coupled systems

G0 = (R &]e0, >0
E A

A; : D(A;) C Z — Z closed & densely defined, X = Z = 7 x Z,
D(A) = (D(A1) N D(As3)) x (D(A2) N D(Ay)).
> Let 0 € o(A4), D(As) C D(A2) and D(A]) C D(A3) and
AzAZlAg S ,C(Z)
> Let there exist M > 1 and w € R such that for every s > w, s € p(A1)
and [[(s — A1) 7" < ﬁ, s>w,neN.
Then A — woE is E-radial and ran E is closed.
The projections P and () for this class of systems are given by

" (2) N (—A;IA:,» 8) (i)

and 9/=

. y 5 —
o)1 ) () W
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Finite-dimensional linear Hamiltonian DAEs

%Em(t) = AQx(t), t>0, Ex(0) = zo.
H(z) = (x, E*Qx)

> FE,Q, AcCM 2y C" det(\E — AQ) # 0 for some
ANeC, E*Q =Q*E > 0.

d

2
dH(x) <0 «= A=J—Rwith J*=—Jand R" =R>0. 4=
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Dissipative Hamiltonian DAE

%Em(t) = AQxz(t), t>0, Ex(0) = z.
H(z) = (z, E*Qx)
» E c L(X,Z) closed range, Q € L(X, Z) invertible with
E'Q=Q*E>0
» A:D(A) C Z— Z closed & Re (Az,z) < 0,2 € D(A)
» There exists s € C such that sE — AQ is boundedly invertible

Then there is X € L(Z, Z) invertible, X > 0:
E*XE = E*Q & H(z) = (Ex, XEx).

Suppose Re (A*x,z) <0, x € D(A*). Then there exists invertible
operators T € L(Z,2) and S € L(X,X):
0 0 I 0
res=0 9. waas=[l 0]

The reduced system 7, (t) = A, E; 'z, (t), has unique mild solutions.
Further, every classical solution of the DAE satisfies 4 H (x(t)) < 0.
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Conclusions and future work

We characterized DAEs % Ex(t) = Ax(t) such that

» For 2(0) € ran E, the DAE has a solution z(-):
FIEz(®)]* <0

> (B,4) ~ ([§8]. [3 4,])
» We generalized Lumer-Phillips Theorem for infinite DAEs.

Future Work:
» port-Hamiltonian DAEs in infinite-dimensional systems
» port-Hamiltonian boundary control DAEs

B.J. and Kirsten Morris: On solvability of dissipative partial

Letters, 2022 /'//_;

Thanks for your attention! Ui
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