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Setting
Control system in discrete time

xu(k + 1) = f(xu(k), u(k)), f : Rn × Rm → Rn, n ∈ N0,

u = (u(0), u(1), . . .), initial condition xu(0) = x0

 xu(k, x0),

admissible state and control spaces X ⊆ Rn, U ⊆ Rm

JNi (x0,u) :=
N−1∑
k=0

`i(xu(k, x0), u(k))+Fi(xu(N, x0)), i = 1, . . . , s,

stage costs `i : X× U→ R, terminal costs Fi : X0 → R

Task: ’min
u

’ JN(x0,u) = ’min
u

’
(
JN1 (x0,u), . . . , J

N
s (x0,u)

)
s.t. xu(k, x0) ∈ X, k = 0, . . . , N − 1,

 u ∈ UN(x0)xu(N, x0) ∈ X0,

u(k) ∈ U, k = 0, . . . , N − 1
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Optimality in Multiobjective (MO) Optimization
What does ’min ’u∈UN (x0)

(
JN1 (x0,u), . . . , J

N
s (x0,u)

)
mean?

 Concept of optimality:
A sequence u? ∈ UN(x0) is called efficient (or Pareto optimal)
if there is no u ∈ UN(x0) such that

∀ i ∈ {1, . . . , s} : JNi (x0,u) ≤ JNi (x0,u
?) and

∃ i ∈ {1, . . . , s} : JNi (x0,u) < JNi (x0,u
?)

J2

J1

JN (x0) = {JN (x0,u)|u ∈ UN (x0)}
JNP (x0) = {JN (x0,u)|u ∈ UNP (x0)}

UNP (x0) = set of efficient u
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Multiobjective Model Predictive Control
The multiobjective optimisation problem “choose u? ∈ UN

P (x)”
can be used as a building block for multiobjective MPC:

0. Choose u?x(0) ∈ UN
P (x(0)), set n := 0 and go to 2.

1. Measure x(n) and choose u?x(n) ∈ UN
P (x(n)) with suitable

properties
2. Apply the feedback µN(x(n)) := u?x(n)(0), set n := n+ 1

and go to 1.

If the “suitable properties” are properly chosen, approximate
infinite horizon efficiency can be shown

[Stieler ’18, Gr./Stieler ’19, Eichfelder/Gr./Krügel/Schießl ’22]

This approach gives full control over the choice of the
particular efficient solution, but requires strong assumptions,
for instance appropriate terminal conditions

 search for alternative approaches

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 4/20



Multiobjective Model Predictive Control
The multiobjective optimisation problem “choose u? ∈ UN

P (x)”
can be used as a building block for multiobjective MPC:

0. Choose u?x(0) ∈ UN
P (x(0)), set n := 0 and go to 2.

1. Measure x(n) and choose u?x(n) ∈ UN
P (x(n)) with suitable

properties
2. Apply the feedback µN(x(n)) := u?x(n)(0), set n := n+ 1

and go to 1.

If the “suitable properties” are properly chosen, approximate
infinite horizon efficiency can be shown

[Stieler ’18, Gr./Stieler ’19, Eichfelder/Gr./Krügel/Schießl ’22]
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This approach gives full control over the choice of the
particular efficient solution, but requires strong assumptions,
for instance appropriate terminal conditions

 search for alternative approaches
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Weighted sum approach

The simplest way to solve a multiobjective optimal control
problem with stage costs `i, i = 1, . . . , s, is to solve a
standard optimal control problem with stage cost

` =
s∑
i=1

νi`i,

with weights νi ≥ 0,
∑
νi = 1

If the efficient solution set is convex, all efficient solutions can
be obtained by varying νi

For non-convex efficient solution sets, at least a subset can be
realised this way
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Weighted sum approach
Idea: If we know that

` =
s∑
i=1

νi`i

satisfies the usual assumptions for stability and performance
of (economic) MPC schemes, then we can apply known
standard results for MPC e.g. [Faulwasser/Gr./Müller ’18]

Most important property: strict dissipativity

Question: If strict dissipativity holds for the `i,
Question: does it also hold for `?

We present our results for s = 2 cost functions

 ` = ν`1 + (1− ν)`2, ν ∈ [0, 1]
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Strict dissipativity
Dynamics: x+ = f(x, u)

x ∈ X = Rn, u ∈ U = Rm

Constraints: (x(k), u(k)) ∈ Y
Constraints: X := {x ∈ X | there is u ∈ U with (x, u) ∈ Y}

A pair (x, u) ∈ Y is an equilibrium, if f(x, u) = x

An equilibrium (xe, ue) ∈ Y is optimal, if `(xe, ue) ≤ `(x, u)
for all equilibria (x, u) ∈ Y

An equilibrium (xe, ue) ∈ Y is strictly optimal, if `(xe, ue) < `(x, u)
for all equilibria (x, u) ∈ Y with (x, u) 6= (xe, ue)

Strict dissipativity: there exists a storage function
λ : X→ R, bounded from below, and α ∈ K∞ with

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)
for all (x, u) ∈ Y with f(x, u) ∈ X

[
− α(‖u− ue‖)

]
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L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 7/20



Linear quadratic problems
We start with problems with linear dynamics

x+ = Ax+Bu

and generalised quadratic costs

`i(x, u) = xTQix+ uTRiu+ sTi x+ vTi u,

i = 1, 2, with Qi ≥ 0 and Ri > 0

Theorem: Assume that Y is either convex and compact or
Y = Rn × Rm. Assume strict dissipativity for both `1 and `2,
with optimal equilibria in the interior of Y

Then strict dissipativity holds for `ν = ν`1 + (1− ν)`2 for all
ν ∈ [0, 1]
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Idea of proof
Idea of proof: Strict dissipativity holds in the LQ setting if and
only if it holds with linear-quadratic storage function

λi(x) = xTPix+ pix

with Pi satisfying

Qi + Pi − ATPiA > 0.

[Gr./Guglielmi ’20]

This can be used to build an LQ-storage function λν with

Pν = νP1 + (1− ν)P2

and pν the Lagrange multiplier of the problem

min `ν(x, u) s.t. f(x, u) = x, (x, u) ∈ Y
Interestingly, while Pν is a convex combination of P1 and P2,
the vector pν in general depends nonlinearly on ν
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L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 9/20



Example
Consider the 1d dynamics x+ = 2x+ 4u with cost
functions

`1(x, u) = 0.1x2 + 10u2 + 6x+ 7u

and
`2(x, u) = 4x2 + 3u2 + 3x+ 8u
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Convex problems
Next we consider linear dynamics x+ = Ax+Bu with
nonlinear and (strictly) convex costs

Theorem: Consider linear dynamics, strictly convex costs `1
and `2, and convex and compact constraint set Y with optimal
equilibria in the interior of Y

Then the optimal control problem is strictly dissipative for
`ν = ν`1 + (1− ν)`2 for all ν ∈ [0, 1]

Idea of proof: Known: problems with linear dynamics and
strictly convex costs are strictly dissipative. This is the case
for `ν = ν`1 + (1− ν)`2. The storage function is λ(x) = pνx
with pν the Lagrange multiplier as before

Note: Strict convexity of either `1 or `2 can be relaxed to mere
convexity if only ν ∈ (0, 1) is considered
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Fully nonlinear problems - sufficient conditions
Now we turn to fully nonlinear problems x+ = f(x, u)

Theorem: Assume strict dissipativity for the cost functions `1
and `2 at the same equilibrium xe

Then the optimal control problem is strictly dissipative for
`ν = µ`1 + (1− ν)`2 for all ν ∈ [0, 1]

Idea of proof: In this particular case one checks that
λν = νλ1 + (1− ν)λ2 is a storage function for `ν

However, if the optimal equilibrium (xeν , u
e
ν) “moves” with ν,

then this will not work

For LQ problems, in this case the ansatz

λν = νλ1 + (1− ν)λ2 + “linear correction”

was successful. Does this work for nonlinear problems?
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Linear correction
It is known from [Faulwasser/Zanon ’18] that under our
standard assumptions the derivative of the storage function in
the equilibrium satisfies

Dλ(xe) = p,

where p is (as before) the Lagrange multiplier of the problem

min `ν(x, u) s.t. f(x, u) = x, (x, u) ∈ Y

This uniquely determines the “linear correction” in the formula

λν = νλ1 + (1− ν)λ2 + “linear correction”

In other words: In order to check whether this ansatz yields a
valid storage function, we only need to check one linear
correction, not many of them
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Linear correction — example

x+ = f(x, u) = 2x− x2 + u+ u2 + u3

with cost functions

`1(x, u) = 2x2+0.0001u2 and `2(x, u) = 2x2+0.9999u2+2u.

Strict dissipativity holds for both `i with linear storage
functions λi, i = 1, 2

For ν = 0.5: Lagrange multiplier pν = 1.111667

 if a storage function λν = 0.5λ1 + 0.5λ2 + “linear correction”
 exists, then it must be linear, hence λν = 1.111667x

However, for this storage function one checks that dissipativity
is violated at x = xe
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Fully nonlinear problems — sufficient conditions
Theorem: Under suitable uniform lower bounds on the second
derivatives of

˜̀
ν(x, u) = ν ˜̀1(x, u) + (1− ν)˜̀2(x, u),

in (x, u) = (xeν , u
e
ν) with rotated costs

˜̀
i(x, u) := `i(x, u)− `i(xei , uei ) + λi(x)− λi(f(x, u))

and uniform upper bounds on the second derivatives of

p̃νf(x, u)

for the linear corrections p̃ν , strict dissipativity holds for
`ν = ν`1 + (1− ν)`2 for all ν ∈ [0, 1]

with storage function

λν(x) = νλ1(x) + (1− ν)λ2(x) + p̃νx

Idea of proof: Use KKT conditions
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Example

For x+ = x3 − 2x2 + u and the two stage costs

`1(x, u) = ln(5x0.34 − u),
`2(x, u) = ln(3x0.2 − u),

we can show that the lower bounds requested in the theorem
hold

⇒ strict dissipativity holds for all weights ν ∈ [0, 1]
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Fully nonlinear problems — sufficient conditions

Furthermore, we can show by means of the implicit function
theorem that under suitable regularity conditions on the
optimisation problem for determining the optimal equilibrium,
strict (x, u)-dissipativity persists for small changes in ν

Can we also find situations where we can prove that strict
dissipativity is lost?
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Fully nonlinear problems — necessary condition

Theorem: Assume strict dissipativity for the cost function
`ν = ν`1 + (1− ν)`2 for all ν ∈ [ν, ν] ⊆ [0, 1] and that the
corresponding optimal equilibria (xeν , u

e
ν) are contained in a

compact set Ŷ ⊂ Y. Then the map

ν 7→ xeν

is continuous on [ν, ν].

Idea of proof: Strict dissipativity implies the existence of a
strictly globally optimal equilibrium xe,. However, at any point
of discontinuity there are two different optimal equilibria with
identical objective value. Hence, xe cannot exist
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Example
Consider the dynamics x+ = x+ u and the cost functions

`1(x, u) =
1

2
x4−1

4
x3−x2+3

4
x+u2 and `2(x, u) = (x−1)2+u2

2 -

4 -

6 -

8 -

10 -

0

- -
-1 1

`1(x, 0) and `2(x, 0)
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Conclusion

Strict dissipativity of a weighted sum of cost functions is a
desirable property for ensuring near optimal performance
of multiobjective MPC

(as well as for ensuring other nice
properties, such as turnpike behaviour)

For linear dynamics and linear-quadratic or strictly convex
costs strict dissipativity persists for all weights, but the
corresponding storage functions are more complicated
than expected

For nonlinear systems, the problem is surprisingly
complicated. We could find a couple of interesting
insights but not a simple condition that would apply to a
large class of systems
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