Strict Dissipativity for Multiobjective Optimal Control via Weighted Sums

Lars Grüne, Lisa Krügel, Matthias A. Müller

Mathematisches Institut, Universität Bayreuth Institut für Regelungstechnik, Leibniz Universität Hannover

> supported by **DFG** Deutsche Forschungsgemeinschaft

Workshop on "Trends on dissipativity in systems and control" Brig, Switzerland, 23-25 May 2022

Control system in discrete time

 $x_{\mathbf{u}}(k+1) = f(x_{\mathbf{u}}(k), u(k)), \quad f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, \ n \in \mathbb{N}_0,$

 $\mathbf{u} = (u(0), u(1), \ldots)$, initial condition $x_{\mathbf{u}}(0) = x_0$

Control system in discrete time

 $x_{\mathbf{u}}(k+1) = f(x_{\mathbf{u}}(k), u(k)), \quad f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, \ n \in \mathbb{N}_0,$ $\mathbf{u} = (u(0), u(1), \ldots), \text{ initial condition } x_{\mathbf{u}}(0) = x_0 \quad \rightsquigarrow \quad x_{\mathbf{u}}(k, x_0),$

Control system in discrete time

 $\begin{aligned} x_{\mathbf{u}}(k+1) &= f(x_{\mathbf{u}}(k), u(k)), \quad f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, \ n \in \mathbb{N}_0, \\ \mathbf{u} &= (u(0), u(1), \ldots), \text{ initial condition } x_{\mathbf{u}}(0) = x_0 \quad \leadsto \quad x_{\mathbf{u}}(k, x_0), \\ \text{admissible state and control spaces } \mathbb{X} \subseteq \mathbb{R}^n, \ \mathbb{U} \subseteq \mathbb{R}^m \end{aligned}$

Control system in discrete time

$$\begin{split} x_{\mathbf{u}}(k+1) &= f(x_{\mathbf{u}}(k), u(k)), \quad f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, \ n \in \mathbb{N}_0, \\ \mathbf{u} &= (u(0), u(1), \ldots), \text{ initial condition } x_{\mathbf{u}}(0) = x_0 \quad \leadsto \quad x_{\mathbf{u}}(k, x_0), \\ \text{admissible state and control spaces } \mathbb{X} \subseteq \mathbb{R}^n, \ \mathbb{U} \subseteq \mathbb{R}^m \end{split}$$

$$J_i^N(x_0, \mathbf{u}) := \sum_{k=0}^{N-1} \ell_i(x_{\mathbf{u}}(k, x_0), u(k)) + F_i(x_{\mathbf{u}}(N, x_0)), \ i = 1, \dots, s,$$

stage costs $\ell_i : \mathbb{X} \times \mathbb{U} \to \mathbb{R}$, terminal costs $F_i : \mathbb{X}_0 \to \mathbb{R}$

Control system in discrete time

$$\begin{split} x_{\mathbf{u}}(k+1) &= f(x_{\mathbf{u}}(k), u(k)), \quad f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, \ n \in \mathbb{N}_0, \\ \mathbf{u} &= (u(0), u(1), \ldots), \text{ initial condition } x_{\mathbf{u}}(0) = x_0 \quad \leadsto \quad x_{\mathbf{u}}(k, x_0), \\ \text{admissible state and control spaces } \mathbb{X} \subseteq \mathbb{R}^n, \ \mathbb{U} \subseteq \mathbb{R}^m \end{split}$$

$$J_i^N(x_0, \mathbf{u}) := \sum_{k=0}^{N-1} \ell_i(x_{\mathbf{u}}(k, x_0), u(k)) + F_i(x_{\mathbf{u}}(N, x_0)), \ i = 1, \dots, s,$$

stage costs $\ell_i : \mathbb{X} \times \mathbb{U} \to \mathbb{R}$, terminal costs $F_i : \mathbb{X}_0 \to \mathbb{R}$

Task: 'min'
$$J^N(x_0, \mathbf{u}) =$$
'min' $\left(J_1^N(x_0, \mathbf{u}), \dots, J_s^N(x_0, \mathbf{u})\right)$
s.t. $x_{\mathbf{u}}(k, x_0) \in \mathbb{X}, \ k = 0, \dots, N-1,$
 $x_{\mathbf{u}}(N, x_0) \in \mathbb{X}_0,$
 $u(k) \in \mathbb{U}, \ k = 0, \dots, N-1$ $\left.\right\} \mathbf{u} \in \mathbb{U}^N(x_0)$

Optimality in Multiobjective (MO) Optimization What does 'min' $_{\mathbf{u} \in \mathbb{U}^{N}(x_{0})} (J_{1}^{N}(x_{0}, \mathbf{u}), \dots, J_{s}^{N}(x_{0}, \mathbf{u}))$ mean?

\rightsquigarrow Concept of optimality:

A sequence $\mathbf{u}^* \in \mathbb{U}^N(x_0)$ is called efficient (or Pareto optimal) if there is no $\mathbf{u} \in \mathbb{U}^N(x_0)$ such that

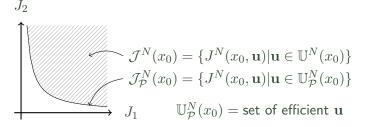
$$\forall i \in \{1, \dots, s\} : J_i^N(x_0, \mathbf{u}) \leq J_i^N(x_0, \mathbf{u}^*) \text{ and } \exists i \in \{1, \dots, s\} : J_i^N(x_0, \mathbf{u}) < J_i^N(x_0, \mathbf{u}^*)$$

Optimality in Multiobjective (MO) Optimization What does 'min' $_{\mathbf{u} \in \mathbb{U}^{N}(x_{0})} (J_{1}^{N}(x_{0}, \mathbf{u}), \dots, J_{s}^{N}(x_{0}, \mathbf{u}))$ mean?

\rightsquigarrow Concept of optimality:

A sequence $\mathbf{u}^* \in \mathbb{U}^N(x_0)$ is called efficient (or Pareto optimal) if there is no $\mathbf{u} \in \mathbb{U}^N(x_0)$ such that

$$\forall i \in \{1, \dots, s\} : J_i^N(x_0, \mathbf{u}) \leq J_i^N(x_0, \mathbf{u}^*) \text{ and } \exists i \in \{1, \dots, s\} : J_i^N(x_0, \mathbf{u}) < J_i^N(x_0, \mathbf{u}^*)$$



The multiobjective optimisation problem "choose $\mathbf{u}^* \in \mathbb{U}_{\mathcal{P}}^N(x)$ " can be used as a building block for multiobjective MPC:

- 0. Choose $\mathbf{u}_{x(0)}^{\star} \in \mathbb{U}_{\mathcal{P}}^{N}(x(0))$, set n := 0 and go to 2.
- 1. Measure x(n) and choose $\mathbf{u}_{x(n)}^{\star}\in\mathbb{U}_{\mathcal{P}}^{N}(x(n))$ with suitable properties
- 2. Apply the feedback $\mu^N(x(n)) := \mathbf{u}_{x(n)}^{\star}(0)$, set n := n + 1 and go to 1.

If the "suitable properties" are properly chosen, approximate infinite horizon efficiency can be shown

[Stieler '18, Gr./Stieler '19, Eichfelder/Gr./Krügel/Schießl '22]

The multiobjective optimisation problem "choose $\mathbf{u}^* \in \mathbb{U}_{\mathcal{P}}^N(x)$ " can be used as a building block for multiobjective MPC:

- 0. Choose $\mathbf{u}_{x(0)}^{\star} \in \mathbb{U}_{\mathcal{P}}^{N}(x(0))$, set n := 0 and go to 2.
- 1. Measure x(n) and choose $\mathbf{u}_{x(n)}^{\star}\in\mathbb{U}_{\mathcal{P}}^{N}(x(n))$ with suitable properties
- 2. Apply the feedback $\mu^N(x(n)) := \mathbf{u}_{x(n)}^{\star}(0)$, set n := n + 1 and go to 1.

If the "suitable properties" are properly chosen, approximate infinite horizon efficiency can be shown

[Stieler '18, Gr./Stieler '19, Eichfelder/Gr./Krügel/Schießl '22]

This approach gives full control over the choice of the particular efficient solution

The multiobjective optimisation problem "choose $\mathbf{u}^* \in \mathbb{U}_{\mathcal{P}}^N(x)$ " can be used as a building block for multiobjective MPC:

- 0. Choose $\mathbf{u}_{x(0)}^{\star} \in \mathbb{U}_{\mathcal{P}}^{N}(x(0))$, set n := 0 and go to 2.
- 1. Measure x(n) and choose $\mathbf{u}_{x(n)}^{\star}\in\mathbb{U}_{\mathcal{P}}^{N}(x(n))$ with suitable properties
- 2. Apply the feedback $\mu^N(x(n)) := \mathbf{u}_{x(n)}^{\star}(0)$, set n := n + 1 and go to 1.

If the "suitable properties" are properly chosen, approximate infinite horizon efficiency can be shown

[Stieler '18, Gr./Stieler '19, Eichfelder/Gr./Krügel/Schießl '22]

This approach gives full control over the choice of the particular efficient solution, but requires strong assumptions, for instance appropriate terminal conditions

The multiobjective optimisation problem "choose $\mathbf{u}^* \in \mathbb{U}_{\mathcal{P}}^N(x)$ " can be used as a building block for multiobjective MPC:

- 0. Choose $\mathbf{u}_{x(0)}^{\star} \in \mathbb{U}_{\mathcal{P}}^{N}(x(0))$, set n := 0 and go to 2.
- 1. Measure x(n) and choose $\mathbf{u}_{x(n)}^{\star}\in\mathbb{U}_{\mathcal{P}}^{N}(x(n))$ with suitable properties
- 2. Apply the feedback $\mu^N(x(n)) := \mathbf{u}_{x(n)}^{\star}(0)$, set n := n + 1 and go to 1.

If the "suitable properties" are properly chosen, approximate infinite horizon efficiency can be shown

[Stieler '18, Gr./Stieler '19, Eichfelder/Gr./Krügel/Schießl '22]

This approach gives full control over the choice of the particular efficient solution, but requires strong assumptions, for instance appropriate terminal conditions

 \rightsquigarrow search for alternative approaches

The simplest way to solve a multiobjective optimal control problem with stage costs ℓ_i , $i = 1, \ldots, s$, is to solve a standard optimal control problem with stage cost

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i,$$

with weights $\nu_i \ge 0$, $\sum \nu_i = 1$

The simplest way to solve a multiobjective optimal control problem with stage costs ℓ_i , $i = 1, \ldots, s$, is to solve a standard optimal control problem with stage cost

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i,$$

with weights $\nu_i \ge 0$, $\sum \nu_i = 1$

If the efficient solution set is convex, all efficient solutions can be obtained by varying ν_i

The simplest way to solve a multiobjective optimal control problem with stage costs ℓ_i , $i = 1, \ldots, s$, is to solve a standard optimal control problem with stage cost

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i,$$

with weights $\nu_i \ge 0$, $\sum \nu_i = 1$

If the efficient solution set is convex, all efficient solutions can be obtained by varying ν_i

For non-convex efficient solution sets, at least a subset can be realised this way

Idea: If we know that

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i$$

satisfies the usual assumptions for stability and performance of (economic) MPC schemes, then we can apply known standard results for MPC e.g. [Faulwasser/Gr./Müller '18]

Idea: If we know that

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i$$

satisfies the usual assumptions for stability and performance of (economic) MPC schemes, then we can apply known standard results for MPC e.g. [Faulwasser/Gr./Müller '18]

Most important property: strict dissipativity

Idea: If we know that

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i$$

satisfies the usual assumptions for stability and performance of (economic) MPC schemes, then we can apply known standard results for MPC e.g. [Faulwasser/Gr./Müller '18]

Most important property: strict dissipativity

Question: If strict dissipativity holds for the ℓ_i , does it also hold for ℓ ?

Idea: If we know that

$$\ell = \sum_{i=1}^{s} \nu_i \ell_i$$

satisfies the usual assumptions for stability and performance of (economic) MPC schemes, then we can apply known standard results for MPC e.g. [Faulwasser/Gr./Müller '18]

Most important property: strict dissipativity

Question: If strict dissipativity holds for the ℓ_i , does it also hold for ℓ ?

We present our results for s = 2 cost functions

$$\rightsquigarrow \quad \ell = \nu \ell_1 + (1 - \nu)\ell_2, \quad \nu \in [0, 1]$$

Dynamics: $x^+ = f(x, u)$

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$ $\mathbb{X} := \{x \in X \mid \text{ there is } u \in U \text{ with } (x, u) \in \mathbb{Y}\}$

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$ $\mathbb{X} := \{x \in X \mid \text{ there is } u \in U \text{ with } (x, u) \in \mathbb{Y}\}$

A pair $(x, u) \in \mathbb{Y}$ is an equilibrium, if f(x, u) = x

An equilibrium $(x^e,u^e)\in\mathbb{Y}$ is optimal, if $\ell(x^e,u^e)\leq\ell(x,u)$ for all equilibria $(x,u)\in\mathbb{Y}$

An equilibrium $(x^e, u^e) \in \mathbb{Y}$ is strictly optimal, if $\ell(x^e, u^e) < \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$ with $(x, u) \neq (x^e, u^e)$

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$ $\mathbb{X} := \{x \in X \mid \text{ there is } u \in U \text{ with } (x, u) \in \mathbb{Y}\}$

A pair $(x, u) \in \mathbb{Y}$ is an equilibrium, if f(x, u) = xAn equilibrium $(x^e, u^e) \in \mathbb{Y}$ is optimal, if $\ell(x^e, u^e) \leq \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$

An equilibrium $(x^e, u^e) \in \mathbb{Y}$ is strictly optimal, if $\ell(x^e, u^e) < \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$ with $(x, u) \neq (x^e, u^e)$

Strict dissipativity: there exists a storage function $\lambda : \mathbb{X} \to \mathbb{R}$, bounded from below, and $\alpha \in \mathcal{K}_{\infty}$ with

 $\lambda(f(x,u)) \le \lambda(x) + \ell(x,u) - \ell(x^e, u^e) - \alpha(\|x - x^e\|)$

for all $(x,u)\in\mathbb{Y}$ with $f(x,u)\in\mathbb{X}$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 7/20

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$ $\mathbb{X} := \{x \in X \mid \text{ there is } u \in U \text{ with } (x, u) \in \mathbb{Y}\}$

A pair $(x, u) \in \mathbb{Y}$ is an equilibrium, if f(x, u) = xAn equilibrium $(x^e, u^e) \in \mathbb{Y}$ is optimal, if $\ell(x^e, u^e) \leq \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$

An equilibrium $(x^e, u^e) \in \mathbb{Y}$ is strictly optimal, if $\ell(x^e, u^e) < \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$ with $(x, u) \neq (x^e, u^e)$

Strict dissipativity: there exists a storage function $\lambda : \mathbb{X} \to \mathbb{R}$, bounded from below, and $\alpha \in \mathcal{K}_{\infty}$ with

$$\begin{split} \lambda(f(x,u)) &\leq \lambda(x) + \ell(x,u) - \ell(x^e, u^e) - \alpha(\|x - x^e\|) \\ \text{for all } (x,u) \in \mathbb{Y} \text{ with } f(x,u) \in \mathbb{X} \qquad \left[-\alpha(\|u - u^e\|) \right] \\ \text{INVERSITY} \end{split}$$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 7/20

Dynamics: $x^+ = f(x, u)$ $x \in X = \mathbb{R}^n$, $u \in U = \mathbb{R}^m$ Constraints: $(x(k), u(k)) \in \mathbb{Y}$ $\mathbb{X} := \{x \in X \mid \text{ there is } u \in U \text{ with } (x, u) \in \mathbb{Y}\}$

A pair $(x, u) \in \mathbb{Y}$ is an equilibrium, if f(x, u) = xAn equilibrium $(x^e, u^e) \in \mathbb{Y}$ is optimal, if $\ell(x^e, u^e) \leq \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$

An equilibrium $(x^e, u^e) \in \mathbb{Y}$ is strictly optimal, if $\ell(x^e, u^e) < \ell(x, u)$ for all equilibria $(x, u) \in \mathbb{Y}$ with $(x, u) \neq (x^e, u^e)$

Strict [(x, u)-]dissipativity: there exists a storage function $\lambda : \mathbb{X} \to \mathbb{R}$, bounded from below, and $\alpha \in \mathcal{K}_{\infty}$ with

 $\lambda(f(x,u)) \le \lambda(x) + \ell(x,u) - \ell(x^e, u^e) - \alpha(\|x - x^e\|)$ for all $(x, u) \in \mathbb{Y}$ with $f(x, u) \in \mathbb{X}$ $\left[-\alpha(\|u - u^e\|) \right]$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 7/20

Linear quadratic problems

We start with problems with linear dynamics

 $x^+ = Ax + Bu$

and generalised quadratic costs

$$\ell_i(x, u) = x^T Q_i x + u^T R_i u + s_i^T x + v_i^T u,$$

i = 1, 2, with $Q_i \ge 0$ and $R_i > 0$

Linear quadratic problems

We start with problems with linear dynamics

 $x^+ = Ax + Bu$

and generalised quadratic costs

$$\ell_i(x, u) = x^T Q_i x + u^T R_i u + s_i^T x + v_i^T u,$$

$$i = 1, 2$$
, with $Q_i \ge 0$ and $R_i > 0$

Theorem: Assume that \mathbb{Y} is either convex and compact or $\mathbb{Y} = \mathbb{R}^n \times \mathbb{R}^m$. Assume strict dissipativity for both ℓ_1 and ℓ_2 , with optimal equilibria in the interior of \mathbb{Y}

Then strict dissipativity holds for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof

Idea of proof: Strict dissipativity holds in the LQ setting if and only if it holds with linear-quadratic storage function

$$\lambda_i(x) = x^T P_i x + p_i x$$

with P_i satisfying

$$Q_i + P_i - A^T P_i A > 0.$$

[Gr./Guglielmi '20]

Idea of proof

Idea of proof: Strict dissipativity holds in the LQ setting if and only if it holds with linear-quadratic storage function

$$\lambda_i(x) = x^T P_i x + p_i x$$

with P_i satisfying

$$Q_i + P_i - A^T P_i A > 0.$$

[Gr./Guglielmi '20]

This can be used to build an LQ-storage function λ_{ν} with

$$P_{\nu} = \nu P_1 + (1 - \nu) P_2$$

and p_{ν} the Lagrange multiplier of the problem

$$\min \ell_{\nu}(x, u) \quad \text{s.t.} \quad f(x, u) = x, \ (x, u) \in \mathbb{Y}$$

Idea of proof

Idea of proof: Strict dissipativity holds in the LQ setting if and only if it holds with linear-quadratic storage function

$$\lambda_i(x) = x^T P_i x + p_i x$$

with P_i satisfying

$$Q_i + P_i - A^T P_i A > 0.$$

[Gr./Guglielmi '20]

This can be used to build an LQ-storage function λ_{ν} with

$$P_{\nu} = \nu P_1 + (1 - \nu) P_2$$

and p_{ν} the Lagrange multiplier of the problem

$$\min \ell_{\nu}(x, u) \quad \text{s.t.} \quad f(x, u) = x, \ (x, u) \in \mathbb{Y}$$

Interestingly, while P_{ν} is a convex combination of P_1 and P_2 , the vector p_{ν} in general depends nonlinearly on ν

UNIVERSIT BAYREUTH

Example

 $\label{eq:consider} \begin{array}{ll} \mbox{Consider the 1d dynamics} & x^+ = 2x + 4u & \mbox{with cost} \\ \mbox{functions} \end{array}$

$$\ell_1(x,u) = 0.1x^2 + 10u^2 + 6x + 7u$$

and

$$\ell_2(x,u) = 4x^2 + 3u^2 + 3x + 8u$$



L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 10/20

Convex problems

Next we consider linear dynamics $x^+ = Ax + Bu$ with nonlinear and (strictly) convex costs

Convex problems

Next we consider linear dynamics $x^+ = Ax + Bu$ with nonlinear and (strictly) convex costs

Theorem: Consider linear dynamics, strictly convex costs ℓ_1 and ℓ_2 , and convex and compact constraint set \mathbb{Y} with optimal equilibria in the interior of \mathbb{Y}

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Convex problems

Next we consider linear dynamics $x^+ = Ax + Bu$ with nonlinear and (strictly) convex costs

Theorem: Consider linear dynamics, strictly convex costs ℓ_1 and ℓ_2 , and convex and compact constraint set \mathbb{Y} with optimal equilibria in the interior of \mathbb{Y}

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: Known: problems with linear dynamics and strictly convex costs are strictly dissipative. This is the case for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$.

Convex problems

Next we consider linear dynamics $x^+ = Ax + Bu$ with nonlinear and (strictly) convex costs

Theorem: Consider linear dynamics, strictly convex costs ℓ_1 and ℓ_2 , and convex and compact constraint set \mathbb{Y} with optimal equilibria in the interior of \mathbb{Y}

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: Known: problems with linear dynamics and strictly convex costs are strictly dissipative. This is the case for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$. The storage function is $\lambda(x) = p_{\nu} x$ with p_{ν} the Lagrange multiplier as before

Convex problems

Next we consider linear dynamics $x^+ = Ax + Bu$ with nonlinear and (strictly) convex costs

Theorem: Consider linear dynamics, strictly convex costs ℓ_1 and ℓ_2 , and convex and compact constraint set \mathbb{Y} with optimal equilibria in the interior of \mathbb{Y}

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: Known: problems with linear dynamics and strictly convex costs are strictly dissipative. This is the case for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$. The storage function is $\lambda(x) = p_{\nu} x$ with p_{ν} the Lagrange multiplier as before

Note: Strict convexity of either ℓ_1 or ℓ_2 can be relaxed to mere convexity if only $\nu \in (0,1)$ is considered

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 11/20

Theorem: Assume strict dissipativity for the cost functions ℓ_1 and ℓ_2 at the same equilibrium x^e

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \mu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Theorem: Assume strict dissipativity for the cost functions ℓ_1 and ℓ_2 at the same equilibrium x^e

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \mu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: In this particular case one checks that $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu) \lambda_2$ is a storage function for ℓ_{ν}

However, if the optimal equilibrium (x^e_ν, u^e_ν) "moves" with ν , then this will not work

Theorem: Assume strict dissipativity for the cost functions ℓ_1 and ℓ_2 at the same equilibrium x^e

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \mu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: In this particular case one checks that $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu) \lambda_2$ is a storage function for ℓ_{ν}

However, if the optimal equilibrium (x^e_ν, u^e_ν) "moves" with ν , then this will not work

For LQ problems, in this case the ansatz

 $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu) \lambda_2 +$ "linear correction"

was successful.

Theorem: Assume strict dissipativity for the cost functions ℓ_1 and ℓ_2 at the same equilibrium x^e

Then the optimal control problem is strictly dissipative for $\ell_{\nu} = \mu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Idea of proof: In this particular case one checks that $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu) \lambda_2$ is a storage function for ℓ_{ν}

However, if the optimal equilibrium (x^e_ν, u^e_ν) "moves" with ν , then this will not work

For LQ problems, in this case the ansatz

 $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu) \lambda_2 +$ "linear correction"

was successful. Does this work for nonlinear problems?

Linear correction

It is known from [Faulwasser/Zanon '18] that under our standard assumptions the derivative of the storage function in the equilibrium satisfies

$$D\lambda(x^e) = p,$$

where \boldsymbol{p} is (as before) the Lagrange multiplier of the problem

 $\min \ell_{\nu}(x, u) \quad \text{s.t.} \quad f(x, u) = x, \ (x, u) \in \mathbb{Y}$

Linear correction

It is known from [Faulwasser/Zanon '18] that under our standard assumptions the derivative of the storage function in the equilibrium satisfies

$$D\lambda(x^e) = p,$$

where p is (as before) the Lagrange multiplier of the problem $\min \ell_{\nu}(x, u)$ s.t. $f(x, u) = x, (x, u) \in \mathbb{Y}$

This uniquely determines the "linear correction" in the formula $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu)\lambda_2 + \text{"linear correction"}$

Linear correction

It is known from [Faulwasser/Zanon '18] that under our standard assumptions the derivative of the storage function in the equilibrium satisfies

$$D\lambda(x^e) = p,$$

where p is (as before) the Lagrange multiplier of the problem $\min \ell_{\nu}(x, u)$ s.t. $f(x, u) = x, (x, u) \in \mathbb{Y}$

This uniquely determines the "linear correction" in the formula $\lambda_{\nu} = \nu \lambda_1 + (1 - \nu)\lambda_2 + \text{"linear correction"}$

In other words: In order to check whether this ansatz yields a valid storage function, we only need to check one linear correction, not many of them

UNIVERSITĂ BAYREUTH

$$x^{+} = f(x, u) = 2x - x^{2} + u + u^{2} + u^{3}$$

with cost functions

 $\ell_1(x,u) = 2x^2 + 0.0001u^2 \quad \text{ and } \quad \ell_2(x,u) = 2x^2 + 0.9999u^2 + 2u.$

$$x^{+} = f(x, u) = 2x - x^{2} + u + u^{2} + u^{3}$$

with cost functions

 $\ell_1(x,u) = 2x^2 + 0.0001u^2 \quad \text{ and } \quad \ell_2(x,u) = 2x^2 + 0.9999u^2 + 2u.$

Strict dissipativity holds for both ℓ_i with linear storage functions λ_i , i = 1, 2

$$x^{+} = f(x, u) = 2x - x^{2} + u + u^{2} + u^{3}$$

with cost functions

 $\ell_1(x,u) = 2x^2 + 0.0001u^2 \quad \text{ and } \quad \ell_2(x,u) = 2x^2 + 0.9999u^2 + 2u.$

Strict dissipativity holds for both ℓ_i with linear storage functions λ_i , i = 1, 2

For $\nu = 0.5$: Lagrange multiplier $p_{\nu} = 1.111667$

$$x^{+} = f(x, u) = 2x - x^{2} + u + u^{2} + u^{3}$$

with cost functions

 $\ell_1(x,u) = 2x^2 + 0.0001u^2 \quad \text{ and } \quad \ell_2(x,u) = 2x^2 + 0.9999u^2 + 2u.$

Strict dissipativity holds for both ℓ_i with linear storage functions λ_i , i = 1, 2

For $\nu = 0.5$: Lagrange multiplier $p_{\nu} = 1.111667$

 \rightarrow if a storage function $\lambda_{\nu} = 0.5\lambda_1 + 0.5\lambda_2 +$ "linear correction" exists, then it must be linear, hence $\lambda_{\nu} = 1.111667x$

$$x^{+} = f(x, u) = 2x - x^{2} + u + u^{2} + u^{3}$$

with cost functions

 $\ell_1(x,u) = 2x^2 + 0.0001u^2 \quad \text{ and } \quad \ell_2(x,u) = 2x^2 + 0.9999u^2 + 2u.$

Strict dissipativity holds for both ℓ_i with linear storage functions $\lambda_i,\,i=1,2$

For $\nu = 0.5$: Lagrange multiplier $p_{\nu} = 1.111667$

 \rightarrow if a storage function $\lambda_{\nu} = 0.5\lambda_1 + 0.5\lambda_2 +$ "linear correction" exists, then it must be linear, hence $\lambda_{\nu} = 1.111667x$

However, for this storage function one checks that dissipativity is violated at $\boldsymbol{x}=\boldsymbol{x}^e$

Fully nonlinear problems — sufficient conditions Theorem: Under suitable uniform lower bounds on the second derivatives of

$$\tilde{\ell}_{\nu}(x,u) = \nu \tilde{\ell}_1(x,u) + (1-\nu)\tilde{\ell}_2(x,u),$$

in $(x, u) = (x_{\nu}^{e}, u_{\nu}^{e})$ with rotated costs $\tilde{\ell}_{i}(x, u) := \ell_{i}(x, u) - \ell_{i}(x_{i}^{e}, u_{i}^{e}) + \lambda_{i}(x) - \lambda_{i}(f(x, u))$

and uniform upper bounds on the second derivatives of

 $\tilde{p}_{\nu}f(x,u)$

for the linear corrections \tilde{p}_{ν} , strict dissipativity holds for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$

Fully nonlinear problems — sufficient conditions Theorem: Under suitable uniform lower bounds on the second derivatives of

$$\tilde{\ell}_{\nu}(x,u) = \nu \tilde{\ell}_1(x,u) + (1-\nu)\tilde{\ell}_2(x,u),$$

in $(x, u) = (x_{\nu}^{e}, u_{\nu}^{e})$ with rotated costs $\tilde{\ell}_{i}(x, u) := \ell_{i}(x, u) - \ell_{i}(x_{i}^{e}, u_{i}^{e}) + \lambda_{i}(x) - \lambda_{i}(f(x, u))$

and uniform upper bounds on the second derivatives of

 $\tilde{p}_{\nu}f(x,u)$

for the linear corrections \tilde{p}_{ν} , strict dissipativity holds for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$ with storage function $\lambda_{\nu}(x) = \nu \lambda_1(x) + (1 - \nu) \lambda_2(x) + \tilde{p}_{\nu} x$

Fully nonlinear problems — sufficient conditions Theorem: Under suitable uniform lower bounds on the second derivatives of

$$\tilde{\ell}_{\nu}(x,u) = \nu \tilde{\ell}_1(x,u) + (1-\nu)\tilde{\ell}_2(x,u),$$

in $(x, u) = (x_{\nu}^{e}, u_{\nu}^{e})$ with rotated costs $\tilde{\ell}_{i}(x, u) := \ell_{i}(x, u) - \ell_{i}(x_{i}^{e}, u_{i}^{e}) + \lambda_{i}(x) - \lambda_{i}(f(x, u))$

and uniform upper bounds on the second derivatives of

 $\tilde{p}_{\nu}f(x,u)$

for the linear corrections \tilde{p}_{ν} , strict dissipativity holds for $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [0, 1]$ with storage function $\lambda_{\nu}(x) = \nu \lambda_1(x) + (1 - \nu) \lambda_2(x) + \tilde{p}_{\nu} x$

Idea of proof: Use KKT conditions

UNIVERSITĂ BAYREUTH

For $x^+ = x^3 - 2x^2 + u$ and the two stage costs

$$\ell_1(x, u) = \ln(5x^{0.34} - u),$$

$$\ell_2(x, u) = \ln(3x^{0.2} - u),$$

we can show that the lower bounds requested in the theorem $\operatorname{\mathsf{hold}}$

 \Rightarrow strict dissipativity holds for all weights $\nu \in [0, 1]$

Furthermore, we can show by means of the implicit function theorem that under suitable regularity conditions on the optimisation problem for determining the optimal equilibrium, strict (x, u)-dissipativity persists for small changes in ν

Furthermore, we can show by means of the implicit function theorem that under suitable regularity conditions on the optimisation problem for determining the optimal equilibrium, strict (x, u)-dissipativity persists for small changes in ν

Can we also find situations where we can prove that strict dissipativity is lost?

Theorem: Assume strict dissipativity for the cost function $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [\underline{\nu}, \overline{\nu}] \subseteq [0, 1]$ and that the corresponding optimal equilibria (x_{ν}^e, u_{ν}^e) are contained in a compact set $\widehat{\mathbb{Y}} \subset \mathbb{Y}$. Then the map

$$\nu \mapsto x_{\nu}^{e}$$

is continuous on $[\underline{\nu}, \overline{\nu}]$.

Theorem: Assume strict dissipativity for the cost function $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [\underline{\nu}, \overline{\nu}] \subseteq [0, 1]$ and that the corresponding optimal equilibria (x_{ν}^e, u_{ν}^e) are contained in a compact set $\widehat{\mathbb{Y}} \subset \mathbb{Y}$. Then the map

$$\nu \mapsto x_{\nu}^{e}$$

is continuous on $[\underline{\nu}, \overline{\nu}]$.

Idea of proof: Strict dissipativity implies the existence of a strictly globally optimal equilibrium x^{e_i}

Theorem: Assume strict dissipativity for the cost function $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [\underline{\nu}, \overline{\nu}] \subseteq [0, 1]$ and that the corresponding optimal equilibria (x_{ν}^e, u_{ν}^e) are contained in a compact set $\widehat{\mathbb{Y}} \subset \mathbb{Y}$. Then the map

$$\nu \mapsto x_{\nu}^{e}$$

is continuous on $[\underline{\nu}, \overline{\nu}]$.

Idea of proof: Strict dissipativity implies the existence of a strictly globally optimal equilibrium x^{e_i} . However, at any point of discontinuity there are two different optimal equilibria with identical objective value

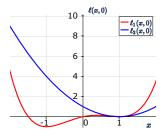
Theorem: Assume strict dissipativity for the cost function $\ell_{\nu} = \nu \ell_1 + (1 - \nu) \ell_2$ for all $\nu \in [\underline{\nu}, \overline{\nu}] \subseteq [0, 1]$ and that the corresponding optimal equilibria (x_{ν}^e, u_{ν}^e) are contained in a compact set $\widehat{\mathbb{Y}} \subset \mathbb{Y}$. Then the map

$$\nu \mapsto x_{\nu}^{e}$$

is continuous on $[\underline{\nu}, \overline{\nu}]$.

Idea of proof: Strict dissipativity implies the existence of a strictly globally optimal equilibrium x^{e_i} . However, at any point of discontinuity there are two different optimal equilibria with identical objective value. Hence, x^e cannot exist

Consider the dynamics $x^+ = x + u$ and the cost functions $\ell_1(x,u) = \frac{1}{2}x^4 - \frac{1}{4}x^3 - x^2 + \frac{3}{4}x + u^2$ and $\ell_2(x,u) = (x-1)^2 + u^2$

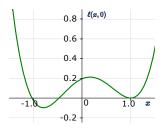


 $\ell_1(x,0)$ and $\ell_2(x,0)$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 19/20

Consider the dynamics $x^+ = x + u$ and the cost functions $\ell_1(x, u) = \frac{1}{2}x^4 - \frac{1}{4}x^3 - x^2 + \frac{3}{4}x + u^2$ and $\ell_2(x, u) = (x-1)^2 + u^2$

 $\mu = 33/41$

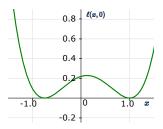


$$\ell_{\nu}(x,0)$$
 for $\nu = 33/41$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 19/20

Consider the dynamics $x^+ = x + u$ and the cost functions $\ell_1(x, u) = \frac{1}{2}x^4 - \frac{1}{4}x^3 - x^2 + \frac{3}{4}x + u^2$ and $\ell_2(x, u) = (x-1)^2 + u^2$

 $\mu = 32/41$

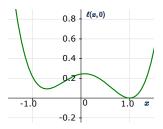


 $\ell_{\nu}(x,0)$ for $\nu = 32/41$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 19/20

Consider the dynamics $x^+ = x + u$ and the cost functions $\ell_1(x, u) = \frac{1}{2}x^4 - \frac{1}{4}x^3 - x^2 + \frac{3}{4}x + u^2$ and $\ell_2(x, u) = (x-1)^2 + u^2$

 $\mu = 31/41$



 $\ell_{\nu}(x,0)$ for $\nu = 31/41$

L. Grüne, L. Krügel, M.A. Müller, Strict Dissipativity for Multiobjective Optimal Control, p. 19/20

• Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC

 Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC (as well as for ensuring other nice properties, such as turnpike behaviour)

- Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC (as well as for ensuring other nice properties, such as turnpike behaviour)
- For linear dynamics and linear-quadratic or strictly convex costs strict dissipativity persists for all weights

- Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC (as well as for ensuring other nice properties, such as turnpike behaviour)
- For linear dynamics and linear-quadratic or strictly convex costs strict dissipativity persists for all weights, but the corresponding storage functions are more complicated than expected

- Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC (as well as for ensuring other nice properties, such as turnpike behaviour)
- For linear dynamics and linear-quadratic or strictly convex costs strict dissipativity persists for all weights, but the corresponding storage functions are more complicated than expected
- For nonlinear systems, the problem is surprisingly complicated. We could find a couple of interesting insights

- Strict dissipativity of a weighted sum of cost functions is a desirable property for ensuring near optimal performance of multiobjective MPC (as well as for ensuring other nice properties, such as turnpike behaviour)
- For linear dynamics and linear-quadratic or strictly convex costs strict dissipativity persists for all weights, but the corresponding storage functions are more complicated than expected
- For nonlinear systems, the problem is surprisingly complicated. We could find a couple of interesting insights but not a simple condition that would apply to a large class of systems

