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In recent years, renewed attention has been paid to the fact that
many numerical optimization algorithms can be interpreted as
dynamical systems. This perspective is essential to bridge the gap
between algorithms and their implementation as feedback systems.

Hauswirth, A., Bolognani, S., Hug, G., & Dorfler, F. (2021).
Optimization algorithms as robust feedback controllers. arXiv
preprint arXiv:2103.11329.
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How to prove the stability of dynamical systems?
Lyapunov function: A universal approach to analyzing the
stability of dynamical systems is to construct a Lyapunov
function that decreases along the trajectories of the system,
proving asymptotic convergence.
Integral quadratic constraints: A powerful LMI-based tool for
stability analysis. The feasibility of LMI implies the linear
convergence of the algorithm.
Dissipativity theory: Dissipativity has been introduced by
Willems and is motivated by the concept of passivity, a
concept from electrical network theory which relates the
stored energy in an electrical network with the supplied energy
into the network.
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In systems and control theory one often encounters nonlinear control systems described, in the state space form, by
means of a set of ordinary differential equations of the following type:

ẋ = f(x) + G(x)u,
y = h(x). (1)

Definition

The control system (24) is said to be dissipative with respect to the supply rate S : Rn × Rp × Rq → R, if
there exists a positive semidefinite storage function V : Rn → R such that the (integral) dissipation inequality

V(x(t1)) − V(x(t2)) ≤
∫ t1

t0
S(x(t), u(t), y(t))dt (2)

If the storage function V is smooth then the integral dissipation inequality (25) can be rewritten as

V̇(x(t)) ≤ S(x(t), u(t), y(t)). (3)
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Definition
The control system (24) with p = q is said to be passive, if there
exist a positive semidefinite storage function V : Rn → R such
that the following dissipation inequality is satisfied:

∇f(x)(f(x) + G(x)u) ≤ uTh(x), ∀x, u. (4)

Because (4) must hold for all u,s, one obtains the so-called
nonlinear positive real lemma

∇f(x)f(x) ≤ 0
∇f(x)G(x) = hT(x).
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Linear Systems
The most well-studied class of control systems are linear
time-invariant control systems given by

ẋ = Ax + Bu, (5)
y = Cx.

For this class of systems, dissipativity theory can fully deploy its
power because supply rates and storage functions can be computed
efficiently.
A semidefinite program, which can be seen as a generalization of a
linear program, is a convex optimization problem and has the form

minimize cTξ

F0 +
k∑

i=1
ξiFi ≤ 0, (6)

Dξ = e

Majid Darehmiraki Analysis of Some First Order Optimization Algorithms by Dissipativity Theory



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Continuous time

v(x) = xTPx (7)

with P ≥ 0. Then, for example, the dissipation inequality (4) for
passivity for system (5) turns into

2xTP(Ax + Bu) ≤ xTCTu (8)

or equivalently into

(
x
u

)T
PA + ATP PB − 1

2CT

BTP − 1
2C 0

(x
u

)
≤ 0 (9)
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Optimization problems lie at the heart of many machine-learning
formulations.

minimize f(x)
subject to x ∈ Ω

The simplest and probably most natural method for minimizing
differentiable functions is gradient descent.
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Gradient descent
xk+1 = xk − α∇f(xk)

for constrained optimization, use projected gradient descent

xk+1 = ΠΩ(xk − α∇f(xk))
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xk+1 = xk − α∇f(xk)

In real, it is the result of applying Euler’s rule, with step-size
αk > 0, to the gradient system

ẋ = −∇f(x)

to prevent oscillation, add a second order term

ẍ = −bẋ −∇f(x)
xk+1 = xk − α∇f(xk) + β(xk − xk−1)

heavy ball method with constants α, β
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Canonical first order methods

Gradient
xk+1 = xk − α∇f(xk)

Heavy Ball

xk+1 = yk − α∇f(xk)

yk = (1 + β)xk − βxk−1

Nesterov

xk+1 = yk − α∇f(yk)

yk = (1 + β)xk − βxk−1
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The main Dynamical system

xk+1 = Axk + Buk

The general form

yk+1 = yk + β(yk − yk−1)− α∇f(wk)

wk = yk + γ(yk − yk−1)

if set xk = [yT
k−1 yT

k ]
T

A =

(
0 Id

−βId (β + 1)Id

)
B =

(
0

−αId

)
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Classical Dissipativity Theory

Consider a linear dynamical system

xk+1 = Axk + Buk (10)

Definition
The supply rate is a function S : Rn ×Rm → R that maps any
state/input pair (x, u) to a scalar measuring the amount of energy
delivered from u to state x.
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Definition
The dynamical system (10) is dissipative with respect to the supply
rate S if there exists a function V : Rn → R+ such that 0 ≤ V(x)
for all x ∈ Rn and

V(xk+1)− V(xk) ≤ S(xk, uk), (11)

for all k. The function V is called a storage function, which
quantifies the energy stored in the state x. In addition, (11) is
called the dissipation inequality.

A variant of (11) known as the exponential dissipation inequality
states that for some 0 ≤ ρ < 1, we have

V(xk+1)− ρ2V(xk) ≤ S(xk, uk), (12)

which states that at least a fraction (1 − ρ2) of the internal energy
will dissipate at every step.
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In summary, dissipativity involves three components
1 Positive semidefinite storage function V
2 the supply rate S
3 dissipation inequality
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Theorem
Consider the following quadratic supply rate with
X ∈ R(n+m)×(n+m) and X = XT.

S(x, u) =
(

x
u

)T
X
(

x
u

)
. (13)

If there exists a matrix P ∈ Rn+m with p ≥ 0 such that(
ATPA − ρ2P ATPB

BTPA BTPB

)
− X ≤ 0 (14)

then the dissipation inequality (12) holds for all trajectories of
(10) with V(x) = xTPx.
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For using the dissipativity theory for linear convergence rate
analysis, we need basically two steps:

1 Choose a proper quadratic supply rate function S satisfying
certain desired properties, e.g. S(xk, uk) ≤ 0.

2 Solve the linear matrix inequality (14) to obtain a storage
function V, which is then used to construct a Lyapunov
function.
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Dissipativity for Gradient Descent

Assume f is L−smooth, m−strongly convex and ∇f(y∗) = 0.

yk+1 = yk − α∇f(yk) =⇒ yk+1 − y∗ = yk − y∗ − αf(yk),

Define xk = yk − y∗ and uk = ∇f(yk) and set A = Ip and B = −αIp.
In this case, the gradient descent method is modeled as (10).
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Consider the following quadratic supply rate

S(xk, uk) =

(
xk
uk

)T( 2mLIp −(m + L)Ip
−(m + L)Ip 2Ip

)(
xk
uk

)
(15)

Due to co-coercivity S(xk, uk) ≤ 0 for all k.
Set P = p ⊗ Ip and

V(xk) = p∥xk∥2 = p∥yk − y∗∥

The following LMI is obtained((
(1 − ρ2)p −αp

−αp α2ρ2

)
+

(
−2mL m + L
m + L −2

))
⊗ Ip ≤ 0
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Therefor
p∥yk+1 − y∗∥2 ≤ ρ2p∥yk − y∗∥2

if there exist p ≥ 0 such that(
(1 − ρ2)p −αp

−αp α2p

)
+

(
−2mL m + L
m + L −2

)
≤ 0 (16)

If we set (α, ρ, p) = (
1
L , 1 − m

L , L2), can recover the standard rate
resulti in Ployak(1987).
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Theorem

Let x∗ ∈ argminx∈Rd f(x) be a minimizer of f : Rd → R ∪ {∞} with a finite optimal value f(x∗). Consider an
iterative first order algorithm in the state-space form.

1 Suppose the fixed points (ξ∗, u∗, y∗, x∗) of the state-space form satisfy

ξ∗ = Akξ∗ + Bku∗, y∗ = Ckξ∗, u∗ = ϕ(y∗), x∗ = Ekξ∗ = y∗ for all k.

2 Suppose there exist symmetric matrices M1
k, M2

k, M3
k such that the following inequalities hold for all k.

F(xk+1) − F(xk) ≤ eT
k M1

kek,

F(xk+1) − F(x∗) ≤ eT
k M2

kek,

0 ≤ eT
k M3

kek,

where ek = [(ξk − ξ∗)
T (uk − u∗)T]T ∈ Rn+d and M3

k is either zero or indefinite.
3 Suppose there exists a nonnegative and nondecreasing sequence of real {ak}, a sequence of nonnegative

reals {σk}, and e sequence of n × n positive semidefinite matrices Pk satisfying

M0
k + akM1

k + (ak+1 − ak)M
2
k + σM3

k ≤ 0 for all k,

where

M0
k =

(
AT

k Pk+1Ak − Pk AT
k Pk+1Bk

BT
k Pk+1Bk AT

k Pk+1Bk

)
.

Then the sequence {xk} satisfies

f(xk) − f(x∗) ≤
a0(f(x0) − f(x∗)) + (ξ0 − ξ∗)

TP0(ξ0 − ξ∗)

ak
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Dissipativity for Nesterov’s Method
Consider following dynamical system

yk+1 = wk − α∇f(wk)

wk = (1 + β)yk − βyk−1 (17)

Equations (17) can be rewritten as follows:(
yk+1 − y∗
yk − y∗

)
= A

(
yk − y∗

yk−1 − y∗

)
+ Buk (18)

where uk = ∇f(wk), A = Ā ⊗ Ip, B = B̄ ⊗ Ip and

Ā =

(
1 + β −β

1 0

)
, B̄ =

(
−α
0

)
.

If set
xk =

(
yk − y∗

yk−1 − y∗

)
Nesterov’s accelerated method can be written in the form of (10).
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Lemma

Let f be L−smooth and m−strongly convex with m > 0. Let y∗ be the unique point satisfying ∇f(y∗) = 0.
Consider Nesterov’s method (17) or equivalently (18). The following inequalities hold for all trajectories.

 yk − y∗
yk−1 − y∗
∇f(wk)

T

X1

 yk − y∗
yk−1 − y∗
∇f(wk)

 ≤ f(yk) − f(yk+1),

 yk − y∗
yk−1 − y∗
∇f(wk)

T

X2

 yk − y∗
yk−1 − y∗
∇f(wk)

 ≤ f(y∗) − f(yk+1)

where Xi = X̄i ⊗ Ip for i = 1, 2, and X̄i are defined by

X̄1 =
1
2

 β2m −β2m −β

−β2m β2m β
−β β α(2 − Lα)

 (19)

X̄2 =
1
2

 (1 + β2)m −β(1 + β)m −(1 + β)

−β(1 + β)m β2m β
−(1 + β) β α(2 − Lα)

 (20)

One can define the supply rate as (13) with a particular choice of X = ρ2X1 + (1 − ρ2)X2, (0 < ρ < 1) . Then
this supply rate satisfies the condition

S(xk, uk) ≤ ρ
2(f(yk) − f(y∗) − (f(yk+1 − f(y∗)). (21)
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Theorem
Let f be L−smooth and m−strongly convex with m > 0. Let y∗ be
the unique point satisfying ∇f(y∗) = 0. Consider Nesterov’s
accelerated method (17). Set X̄ = ρ2X̄1 + (1 − ρ2)X̄2. Thus there
exist a matrix 0 < P̄ ∈ R2×2 such that(

ĀP̄Ā − ρ2P̄2 ĀP̄B̄
B̄P̄Ā B̄P̄B̄

)
− X̄ ≤ 0 (22)

then set P = P̄ ⊗ Ip and define the Lyapunov function

Vk =

(
yk − y∗

yk−1 − y∗

)T
P
(

yk − y∗
yk−1 − y∗

)
+ f(yk)− f(y∗), (23)

which satisfies Vk+1 ≤ ρ2Vk for all k. Moreover, we have
f(yk)− f(y∗) ≤ ρ2kV0 for Nesterov’s method.
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P̄ =


√

L
2√

m
2 −

√
L
2

(√L
2

√
m
2 −

√
L
2

)

clearly P̄ ≥ 0 . Now define k =
L
m . Given α =

1
L , β =

√
k − 1√
k + 1

and

ρ2 = 1 −
√

m
L . It is easy to see that the left side of inequality (14)

is as follows:

m(
√

k − 1)3

2(k +
√

k)

−1 1 0
1 −1 0
0 0 0
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Continuous-time Dissipation Inequality

In systems and control theory one often encounters nonlinear control systems described, in the state space form, by
means of a set of ordinary differential equations of the following type:

ẋ = f(x) + G(x)u,
y = h(x). (24)

Definition

The control system (24) is said to be dissipative with respect to the supply rate S : Rn × Rp × Rq → R, if
there exists a positive semidefinite storage function V : Rn → R such that the (integral) dissipation inequality

V(x(t1)) − V(x(t2)) ≤
∫ t1

t0
S(x(t), u(t), y(t))dt (25)

If the storage function V is smooth then the integral dissipation inequality (25) can be rewritten as

V̇(x(t)) ≤ S(x(t), u(t), y(t)). (26)
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Consider

ẋ(t) = A(t)x(t) + B(t)u(t) (27)

Theorem
Let X(t) ∈ R(p+q)×(p+q) and XT(t) = X(t) for all t. Consider the
quadratic supply rate

S(x(t), u(t), t) =
(

x(t)
u(t)

)T
X
(

x(t)
u(t)

)
(28)

If there exists a family of matrices 0 ≥ P(t) ∈ Rp+q such that(
ATP + PA + Ṗ PB

BTP 0

)
− X ≤ 0 (29)

then the dissipation inequality (26) holds for all trajectories of
(27) with V(x, t) = xTPx.
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Ÿ +
3
t Ẏ +∇f(Y) = 0

Set

x = [ẎT YT − yT
∗ ]

T, u = ∇f(y)

A(t) =
(−3

t Ip 0p

Ip 0p]

)
, B(t) =

(
−Ip
0p

)
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Denote
G(Y, t) = t2(f(Y)− f∗)

Convexity implies
f(Y)− f∗ ≤ ∇f(Y)T(Y − y∗)

2t(f(Y)− f∗) ≤

 Ẏ
Y − y∗

u

T0p 0p 0p
0p 0p tIp
0p tIp 0p

 Ẏ
Y − y∗

u


since

Ġ(Y, t) = 2t(f(Y)− f∗) + t2∇f(Y)TẎ
then

Ġ ≤

 Ẏ
Y − y∗

u

T


0p 0p
t2

2 Ip
0p 0p tIp

t2

2 Ip tIp 0p


 Ẏ

Y − y∗
u


Majid Darehmiraki Analysis of Some First Order Optimization Algorithms by Dissipativity Theory



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Continuous time

For supply rate S 
0p 0p

t2

2 Ip
0p 0p tIp

t2

2 Ip tIp 0p


Set

P = 2[ t2 Ip Ip]T[
t
2 Ip Ip], V = xTPx

Therefore
V̇ ≤ S ≤ −Ġ
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Future work

Minimize f(x)
S.t. gi(x) ≤ 0, i = 1, 2, . . .m

L(x, λ) = f(x) +
m∑

i=1
λigi(x)

ẋ = −∇f(x)−
m∑

i=1
λi∇gi(x)

λ̇i = P(λ,gi), i = 1, 2, . . . ,m
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Thank you for your attention.
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