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Sharing ideas, sharing lives



The numerics of preserving structures



Geometric numerical integration

The denomination recalls the approach to geometry formulated by
Felix Klein in his Erlangen program (1893);

geometry = the study of invariants under certain transformations;

geometric numerical methods launched to retain peculiar features
of dynamical systems under discretizations;

Arnold (2002), speech addressed to the participants of the
International Congress of Mathematicians in Beijing:

“The design of stable discretizations of systems of PDEs often
hinges on capturing subtle aspects of the structure of the system in
the discretization. This new geometric viewpoint has provided a
unifying understanding of a variety of innovative numerical
methods developed over recent decades”;



Geometric numerical integration (ctd.)

subtle connection with the so-called geometric integration theory
by Hassler Whitney (1957);

Arnold shows that the function spaces introduced by Whitney (the
so-called Whitney elements) represent what is required for a
geometric discretization of many PDEs.

Douglas N. Arnold, Differential complexes and numerical stability, Proceedings of the
ICM, Beijing 2002, vol. 1, 137–157 (2002).

R. McLachlan, Featured Review: Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. SIAM Review
45(4), 817–821 (2003).

E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration.
Structure-preserving algorithms for ordinary differential equations, Second edition,
Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin (2006).

E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the
Störmer-Verlet method, Acta Numer. 12, 399–450 (2003).



Geometric numerical integration (ctd.)

A famous method: leapfrog method, also known as Störmer-Verlet
method. This method, for the discretization of the second order
problem

q̈ = f(q),

is given by
qn+1 − 2qn + qn−1 = h2f(qn).

Extensively used in many fields, such as celestial mechanics and
molecular dynamics.

First due to Störmer (1907), a variant of this scheme to compute
the motion of ionized particles in the Earth’s magnetic field
(aurora borealis);

above formulation due to Verlet (1967) for the computer
simulation of molecular dynamics models;

interested in the history of science, he discovered that his scheme
was previously used by several authors: for instance, by Newton in
his Principia (1687), to prove Kepler’s second law.



Geometric numerical integration (ctd.)

Seminal contribution by De Vogelaere (1956), “a marvellous paper,
short, clear, elegant, written in one week, submitted for publication
and never published”;

examples of numerical methods (such as the symplectic Euler
method) retaining the symplecticity of Hamiltonian problems;

still regarding Hamiltonian problems, successive contributions by
Ruth (1983) and Kang (1985);

1988 starting year for the establishment of a theory of conservative
numerics for Hamiltonian problems: criterion for the numerical
conservation of the symplecticity via Runge-Kutta methods
independently by Lasagni, Sanz-Serna, Suris, depending on a
similar condition discovered by Cooper (1987) for the numerical
conservation of quadratic first integrals.

R. D’Ambrosio, Numerical approximation of differential problems, Springer, to appear.



Stochastic differential equations

Itō problem:

dX(t) = f(X(t))dt+ g(X(t)) dW (t), t ≥ 0,

f : Rd → Rd (drift), g : Rd → Rd×m (diffusion),

W (t) m-dimensional Wiener process.
Integral form:

X(t) = X(0) +

∫ t

0
f(X(s))ds+

∫ t

0
g(X(s))dW (s)︸ ︷︷ ︸
Itō integral*

.

*On a uniform grid {0 < t1 < t2 < · · · ≤ tn}, it is defined as

lim
n→∞

n∑
j=1

g(X(tj))(W (tj+1)−W (tj)).

Wiener increments are
√
h · N (0, 1)− distributed, where h = tj+1 − tj .



Stochastic geometric numerical integration



Stochastic geometric numerical integration

Invariance of asymptotic laws in the discretization of linear
systems (Schurz, 1999);

stochastic oscillators (Melbo, Higham, 2004; Burrage, Lythe, 2007, 2009;

Vilmart, 2014; Welfert, 2017; D’Ambrosio, Moccaldi, Paternoster, 2018; Laurent,

Vilmart, 2020; D’Ambrosio, Scalone, 2020, 2021);

stochastic Hamiltonian (Burrage 2012, 2014) and Poisson problems
(Cohen, Vilmart, 2021);

invariant measure of ergodic SDEs (Abdulle, Vilmart, Zygalakis, 2014;

Laurent, Vilmart, 2021);

energy-preserving methods for stochastic Hamiltonians.

C. Chen, D. Cohen, R. D’Ambrosio, A. Lang, Drift-preserving numerical integrators
for stochastic Hamiltonian systems, Adv. Comput. Math. (2020).

R. D’Ambrosio, G. Giordano, B. Paternoster, A. Ventola, Perturbative analysis of
stochastic Hamiltonian problems under time discretizations, Appl. Math. Lett. (2021).

R. D’Ambrosio, S. Di Giovacchino, Long-term analysis of stochastic Hamiltonian
problems under time discretizations, submitted.



Outline of the talk

Mean-square dissipation

E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, Adv. Comput. Math. (2021).

R. D’Ambrosio, S. Di Giovacchino, Mean-square contractivity of stochastic
theta-methods, Comm. Nonlin. Sci. Numer. Simul. (2021).

R. D’Ambrosio, S. Di Giovacchino, Nonlinear stability issues for stochastic
Runge-Kutta methods, Comm. Nonlin. Sci. Numer. Simul. (2021).

Stochastic Hamiltonian problems

C. Chen, D. Cohen, R. D’Ambrosio, A. Lang, Drift-preserving numerical integrators
for stochastic Hamiltonian systems, Adv. Comput. Math. (2020).

R. D’Ambrosio, G. Giordano, B. Paternoster, A. Ventola, Perturbative analysis of
stochastic Hamiltonian problems under time discretizations, Appl. Math. Lett. (2021).

R. D’Ambrosio, S. Di Giovacchino, Long-term analysis of stochastic Hamiltonian
problems under time discretizations, submitted.



Outline of the talk

1 Mean-square dissipation

2 Stochastic Hamiltonian problems



Memorandum on nonlinear deterministic
equations
Consider a nonlinear test problem{

y′(t) = ϕ
(
t, y(t)

)
, t ≥ 0,

y(0) = y0,

with ϕ : R× Rm → Rm satisfying a one-sided Lipschitz condition(
ϕ(t, y1)− ϕ(t, y2)

)T
(y1 − y2) ≤ 0, (?)

for all t ≥ 0 and y1, y2 ∈ Rm. Denote by y(t) and ỹ(t) two solutions
with initial conditions y0 and ỹ0, respectively. Condition (?) implies
the contractivity of the trajectories∥∥y(t2)− ỹ(t2)

∥∥ ≤ ∥∥y(t1)− ỹ(t1)
∥∥,

for 0 ≤ t1 ≤ t2, where ‖ · ‖ is any norm in Rm, and the corresponding
problem is said to be dissipative.
Contractive numerical solutions for dissipative problems: AN-stability,
G-stability, algebraic stability, . . . (pioneered by Dahlquist, 1975).



Stochastic contractivity

Nonlinear Itō problem:

dX(t) = f(X(t))dt+ g(X(t))dW (t), t ∈ [0, T ]

Assumptions

(i) C1-continuity of drift and diffusion;

(ii) one-sided Lipschitz condition for the drift

< x− y, f(x)− f(y) >≤ µ‖x− y‖2, ∀x, y ∈ Rn;

(iii) global Lipschitz for the diffusion

‖g(x)− g(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rn.



Stochastic contractivity (ctd.)

Theorem (Higham, Kloeden, 2005)

Assume (i)− (iii) hold. Then, two solutions X(t) e Y (t) of an Itō SDE
with E‖X0‖2 <∞ and E‖Y0‖2 <∞ satisfy

E‖X(t)− Y (t)‖2 ≤ E‖X0 − Y0‖2eαt,

where
α = 2µ+ L.

α < 0 provides mean-square contractivity.

D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential
equations with jumps, Numer. Math. (2005).

E. Buckwar, R. D’Ambrosio, Exponential mean-square stability properties of stochastic
linear multistep methods, Adv. Comput. Math. (2021).

R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic θ-methods,
Comm. Nonlinear Sci Numer. Simul. (2021).

R. D’Ambrosio, S. Di Giovacchino Nonlinear stability issues of stochastic Runge-Kutta
methods, Comm. Nonlinear Sci Numer. Simul. (2021).



Stochastic θ-methods

θ-Maruyama

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn,

θ-Milstein

Xn+1 = Xn + (1− θ)∆tf(Xn) + θ∆tf(Xn+1) + g(Xn)∆Wn

+
1

2
g′(Xn)g(Xn)(∆W 2

n −∆t),

Nonlinear stability analysis:

R. D’Ambrosio, S. Di Giovacchino Mean-square contractivity of stochastic θ-methods,
Commun. Nonlinear Sci. Numer. Simul. (2021).



θ-Maruyama

Theorem

Under the assumptions (i)–(iii), any two θ-Maruyama numerical
solutions Xn and Yn, n ≥ 0, satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eν(θ,∆t)tn ,

where

ν(θ,∆t) =
1

∆t
lnβ(θ,∆t), β(θ,∆t) = 1 +

α+ (1− θ)2M∆t

1− 2θµ∆t
∆t,

with
M = sup

t∈[0,T ]
E|f ′(X(t))|2.

Theorem

For any fixed value of θ ∈ [0, 1], |ν(θ,∆t)− α| = O(∆t).



θ-Milstein

Theorem

Under the assumptions (i)–(iii), any two θ-Maruyama numerical
solutions Xn and Yn, n ≥ 0, satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eε(θ,∆t)tn ,

where

ε(θ,∆t) =
1

∆t
ln γ(θ,∆t), γ(θ,∆t) = β(θ,∆t) +

M̃∆t2

2(1− 2θµ∆t)
,

with M̃ = sup
t∈[0,T ]

E|h′(X(t))|2, h(X(t)) = g(X(t))g′(X(t)).

Theorem

For any fixed value of θ ∈ [0, 1], |ε(θ,∆t)− α| = O(∆t).



Region of mean-square contractivity

Definition

For a nonlinear stochastic differential equation satisfying assumptions
(i)− (iii), a θ-method is said to generate mean-square contractive
numerical solutions in a region R ⊆ R+ if, for a fixed θ ∈ [0, 1],

ν(θ,∆t) < 0, ∀∆t ∈ R

for the θ-Maruyama,

ε(θ,∆t) < 0, ∀∆t ∈ R

for the θ-Milstein.

Definition

A stochastic θ-method is said unconditionally mean-square contractive
if, for a given θ ∈ [0, 1], R = R+.



Mean-square contractivity: θ-Maruyama

Mean-square contractivity holds true if

0 < β(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =


(

0,
|α|

(1− θ)2M

)
, θ < 1,

R+, θ = 1.

The θ-Maruyama method with θ = 1 (implicit Euler-Maruyama) is
unconditionally mean-square contractive.



Mean-square contractivity: θ-Milstein

Mean-square contractivity holds true if

0 < γ(θ,∆t) < 1,

for any ∆t ∈ R, i.e.

R =



(
0,

2|α|
2(1− θ)2M + M̃

)
, θ < 1,(

0,
2|α|
M̃

)
, θ = 1.

Parameter estimation as in global optimization algorithms.



Numerical tests: stochastic Ginzburg-Landau

f(X(t)) = −4X(t)−X(t)3, g(X(t)) = X(t), X0 = 1, Y0 = 0.

For this problem L = 1 and µ = −4, so α = −7 < 0.

stochastic trapezoidal method (θ = 1/2): R =
(
0, 7

4

)
;
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Stochastic Ginzburg-Landau (ctd.)

stochastic implicit Euler, unconditionally mean-square contractive;
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Stochastic Ginzburg-Landau (ctd.)

θ-Milstein method with θ = 1/2: R =
(
0, 14

9

)
.

0 1 2 3 4 5 6 7 8 9 10
10

-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

t = 0.1562

 = -7

t = 0.3906

 = -5.5

t = 0.7812

 = -2

t  1.3281

 = -0.5

t = 1.7969



Numerical tests: nonlinear drift

f(X(t)) = −4

[
sin(X1(t))

sin(X2(t))

]
, g(X(t)) =

1

7

 X1(t)
3

2
X2(t)

5

2
X1(t) −1

2
X2(t)

 .
Initial data: X0 = [1 1]T and Y0 = [0 0]T. For this problem the
constants L and µ are estimated as L = 0.148 and µ = −3.56, so
α ≈ −7.5 < 0.

Stochastic trapezoidal method: R = (0, 1.1875) ;

stochastic implicit Euler method, unconditionally mean-square
contractive.



Numerical tests: nonlinear drift (ctd.)
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Figure: Mean-square deviations over 2000 paths for the trapezoidal method.



Numerical tests: nonlinear drift (ctd.)
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Outline of the talk

1 Mean-square dissipation

2 Stochastic Hamiltonian problems



Deterministic Hamiltonians: memorandum

ẏ(t) = J ∇H(y(t)), t ≥ 0,

y(0) = y0,
J =

[
0 −I
I 0

]
.

y(t) =

[
p(t)

q(t)

]
∈ R2d, generalized moments and coordinates;

the Hamiltonian function

H : R2d → R

is a first integral of the problem:

H(y(t)) = H(y0), t ≥ 0.

Indeed,

d

dt
H(y(t)) = ∇H(y(t))Tẏ(t) = ∇H(y(t))TJ−1∇H(y(t)) = 0.



Conservative integrators

Symplectic Runge-Kutta methods exactly preserve quadratic
Hamiltonians;

if the solution, computed by a Runge-Kutta method of order p,
lays in a compact set, then

H(yn) = H(y0) +O(hp),

over exponentially long times
(Benettin-Giorgilli, 1994);

nearly preserving linear multistep methods
over long times (Hairer-Lubich, 2004);

nearly preserving multivalue methods (Butcher, D’Ambrosio,
2017; D’Ambrosio, Hairer, 2013, 2014).



Stochastic Hamiltonian problems

For Hamiltonians of the form

H(p(t), q(t)) =
1

2
pTp+ V (q), t ≥ 0,

with V : Rd → R sufficiently smooth potential, we consider

dq(t) = p(t) dt,

dp(t) = −V ′(q(t)) dt+ Σ dW (t).

with Σ ∈ Rd×m.
Stochastic generalization of classical mechanics that reconciles

Hamiltonian nature (canonical character of evolution equations)

non-differentiability of Wiener process (stochastic effects visible,
for instance, in the statistical independence of the future from the
past, irreversibility of the time arrow, random effects exhibited by
quantum mechanics in the context of the theory of diffusions).



Stochastic Hamiltonian problems

For Hamiltonians of the form

H(p(t), q(t)) =
1

2
pTp+ V (q), t ≥ 0,

with V : Rd → R sufficiently smooth potential, we consider

dq(t) = p(t) dt,

dp(t) = −V ′(q(t)) dt+ Σ dW (t).

with Σ ∈ Rd×m.

Invariance trace law (Burrage, 2014)

E [H(p(t), q(t))] = E [H(p(t0), q(t0))] +
1

2
Tr
(

Σ>Σ
)
t

Linear drift in the expected Hamiltonian.

Is this property naturally preserved along discretizations?
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Numerical preservation of the trace law

In Burrage (2014), the experiments reveal that

the stochastic perturbation of symplectic RK methods does not
preserve the trace law;

the same for energy-preserving schemes.

R. D’Ambrosio, G. Giordano, B. Paternoster, A. Ventola, Perturbative analysis of
stochastic Hamiltonian problems under time discretizations, Appl. Math. Lett. 120,
article number 107223 (2021).

Example: single Wiener process

dq(t) = p(t) dt

dp(t) = −V ′(q(t)) dt+ σ dW (t).

The linear part of the σ-expansions of p and q contains the secular
term σ

√
t.



Numerical preservation of the trace law (ctd.)

C. Chen, D. Cohen, R. D’Ambrosio, A. Lang, Drift-preserving numerical integrators for
stochastic Hamiltonian systems, Adv. Comp. Math. (2020).

Ψn+1 = pn + Σ∆Wn −
h

2

∫ 1

0
V ′(qn + shΨn+1)ds,

qn+1 = qn + hΨn+1, (?)

pn+1 = pn + Σ∆Wn − h
∫ 1

0
V ′(qn + shΨn+1) ds.

Theorem

If V ∈ C1(Rd), the scheme (?) satisfies the trace law

E [H(pn, qn)] = E [H(p(t0), q(t0))] +
1

2
Tr
(

Σ>Σ
)
tn,

for any grid point tn = nh.



Numerical test (stochastic pendulum)

H(p, q) =
1

2
p2 − cos(q), σ = 0.25, (p0, q0) = (1,

√
2).
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Numerical test (double-well potential)

H(p, q) =
1

2
p2 +

1

4
q4 − 1

2
q2, σ = 0.5, (p0, q0) = (

√
2,
√

2).
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Numerical test (Hénon-Heiles with double noise)

H(p, q) =
1

2

(
p2

1 + p2
2

)
+

1

2

(
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2

)
+ α

(
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)
,

Σ =
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, α = 1/16.
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Spoiler: Stratonovich Hamiltonian problems

Stratonovich calculus obeys to the classical chain rule. Then, we have
Hamiltonian conservation:

H(q(t), p(t)) = H(q(0), p(0)) := H0;

E [H(q(t), p(t))] = E [H0] = H0.

N. Milstein, YU. M. Repin, M.V. Tretyakov, Numerical Methods for
Stochastic Systems Preserving Symplectic Structure, SINUM 2002.

Is this property naturally preserved along discretizations for long times?

R. D’Ambrosio, S. Di Giovacchino, Long-term analysis of stochastic
Hamiltonian systems under time discretizations, submitted.

E [H(qn, pn)] = H0 +O
(
∆tr+1

)
+O (∆trtn) +O

(
tn∆treC(σ)∆trtn

)
,

where r is the weak order of the method.
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Numerical test: double-well potential

V (q) =
1

4
q4 − 1

2
q2.

Stochastic perturbation of the energy-preseving scheme introduced (in
the deterministic setting) by E. Celledoni et al. with r = 1:

qn+1 = qn + ξn

[
1

6
pn +

2

3

(
pn + pn+1

2

)
+

1

6
pn+1

]
= qn +

ξn
2

(pn + pn+1) ,

pn+1 = pn − ξn
[

1

6
V ′(qn) +

2

3
V ′
(
qn + qn+1

2

)
+

1

6
V ′(qn+1)

]
,

where ξn = ∆t+ σ∆Wn.

E. Celledoni, R. Mclachlan, D.I. Mclaren, B. Owren, G.R.W. Quispel,
W.M. Wright, Energy-preserving Runge-Kutta methods, ESAIM: M2AN
2009.

We consider σ = 1 in next simulation.
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Figure: ∆t = 0.61
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Conclusions

Structure-preservation in SDEs

Long-term invariant (laws) preservation

Avoid (when possible) the construction of new schemes

Hidden properties given as conditional stability constraints

Thank you for your attention!
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